

Supported by

Office of Science

Correlation between Electron Transport and Shear Alfven Activity in NSTX

D. Stutman¹, N. Gorelenkov², L. Delgado¹, M. Finkenthal¹,

E. Fredrickson², S. Kaye², E. Mazzucato², K. Tritz¹

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC Irvine** UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

For the NSTX Research Team [1] Johns Hopkins University [2] PPPL, Princeton University

Presenter N. Gorelenkov

50th APS/DPP Meeting

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

$\rm T_e$ flattens in some NSTX H-modes as $\rm P_b$ increased

- Not caused by low-f MHD or fast ion (FI) radial redistribution
- $\chi_e^{PB} \ge 10 \text{ m}^2/\text{s}$ inside r/a ≤ 0.4 , while $\chi_i \sim \chi^{NC}$
- Perturbative experiments support PB transport picture

$\nabla T_{\rm e}$ is too low for kinetic instabilities

- Weak high-k fluctuations
- Persistent 0.5–1.1 MHz GAE/CAEs

(Global and Compressional Alfvén Eigenmodes)

(Gorelenkov et al. NF 2003)

NBI power scan leads to fast ion density change in the core

- q 'frozen' by preheating, P_b then stepped
- almost constant q, n_e, ω_{ExB}
- Strong variation in fast ion (FI) density
 ⇒ expected GAE drive

4

T_e flattening, χ_e increase correlate with GAE intensity

- Plasma with strong GAEs have flat T_e , high central χ_e
- Plasmas with faint/no GAEs have peaked T_e, low χ_e

NSTX

Interferometry shows significant GAE amplitudes

- High-k diagnostic in interferometric mode at r/a=0.25
- Peak δn_e likely higher, $\delta B_r/B \sim m \delta n_e/n_e \epsilon$
- Broadband, overlapping GAE character at high P_b

Electrons can resonantly interact with GAEs in NSTX

() NSTX

7

ORBIT code predicts significant e-transport due to GAEs

At such perturbation level $\xi_r/R > \alpha$ m / $k_{||}$ r = $\sim \alpha/\epsilon$ = $\sim 4*10^{-4}$ at r/a=0.25.

This is on the same order as high-k diagnostic measured GAE amplitudes.

Summary

- T_e flattening in NSTX H-modes is observed.
- Flattening correlates with intensity of shear Global Alfvén Eigenmode (GAE) activity.
- GAEs apparent as broadband 0.5–1.1 MHz magnetic and density fluctuations.
- First assessment with ORBIT code, test particle simulations indicates GAEs may resonantly couple with the bulk (~1 keV), primarily trapped electrons.
- $\chi_e = 10m^2/s$ for electron heat transport from ORBIT simulations requires $\delta n_e/n_e \sim 10^{-4}$, on the same order as was measured by high-k diagnostic.

GAEs and T_e flattening correlate also in L-modes

• A cause for T_e flattening also inside tokamak eITBs?