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Te flattens in some NSTX H-modes as Pb increased 
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• Not caused by low-f MHD or fast ion (FI) radial redistribution  
• χe

PB ≥10 m2/s inside r/a ≤0.4, while  χi ~ χNC

• Perturbative experiments support PB transport picture
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 ∇Te is too low for kinetic instabilities  

• Weak high-k fluctuations
• Persistent 0.5–1.1 MHz GAE/CAEs
(Global and Compressional Alfvén Eigenmodes) ‏

  (Gorelenkov et al. NF 2003)



NSTXNSTX 50th APS/DPP  – GAEs and electron transport (Stutman)‏ 4November 17, 2008

NBI power scan leads to fast ion density change in the core 
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• q ‘frozen’ by preheating, Pb then stepped
• almost constant q, ne, ωExB

• Strong variation in fast ion (FI) density
⇒ expected GAE drive
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Te flattening, χe increase correlate with GAE intensity
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• Plasma with strong GAEs have flat Te, high central χe
• Plasmas with faint/no GAEs have peaked Te,  low χe
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Interferometry shows significant GAE amplitudes

• High-k diagnostic in interferometric mode at r/a=0.25
• Peak δne likely higher, δBr/B ~ mδne/neε

• Broadband, overlapping GAE character at high Pb

6 MW
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Characteristic frequencies of thermal species:Characteristic frequencies of thermal species:

• fGAE = ~400–600kHz, but may go higher.

• transit (passing) frequency
fte = v||/2πqR = 2MHz at Te = 1keV

• bounce (trapped) frequency
fbe = v||(r/2R)1/2/2πqR = 560kHz at
q0 = 1.25, R = 1m, a = 0.6m, r/a = 0.23

• electron Coulomb scattering frequency
νce = 0.7 × 1011 sec-1, (νee+νie)/ωce = 6 × 10-7

• thermal ion cyclotron frequency fci = 3MHz.

14 GAEs with n = 1 – 8; m is such that f = 400–600kHz 
are used in guiding center simulations for e-transport. 

Electrons can resonantly interact with GAEs in NSTX

Theory for ORBIT:
δB=rot (α*R0*B0) ‏

GAE frequency equals to trapped electron fGAE frequency equals to trapped electron fbebe:
resonances are ωgae – ωbe =0.
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Use ORBIT, guiding center code

Apply to H-mode NSTX plasma

Test e-particle simulations produce 
thermal electron transport

ORBIT predicts:
χe>10m2/s at α>10-4  (δBr/B=mδne/neε=~10-2)‏

At such perturbation level ξr/R > α m / k|| r = ~α/ε = ~4*10-4 at r/a=0.25.

This is on the same order as high-k diagnostic measured GAE amplitudes. 

ORBIT code predicts significant e-transport due to GAEs
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Summary

• Te flattening in NSTX H-modes is observed.

• Flattening correlates with intensity of shear Global Alfvén
Eigenmode (GAE) activity.

• GAEs apparent as broadband 0.5–1.1 MHz magnetic and
density fluctuations.

• First assessment with ORBIT code, test particle
simulations indicates GAEs may resonantly couple with
the bulk (~1 keV), primarily trapped electrons.

• χe = 10m2/s for electron heat transport from ORBIT
simulations requires δne/ne ~ 10-4, on the same order as
was measured by high-k diagnostic.
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GAEs

GAEs and Te flattening correlate also in L-modes
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• A cause for Te flattening also inside tokamak eITBs?
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