

Supported by



### Effects of Lithium-Coated Plasma-Facing Components on NSTX Discharges

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC Irvine** UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin** 

#### **Robert Kaita, PPPL**

For the NSTX Research Team 50th Annual Meeting of the APS Division of Plasma Physics Reunion A, Hyatt Regency Hotel, Dallas, TX November 17, 2008





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

#### Introduction

- Lithium plasma-facing components (PFCs) have potentially attractive features for reactors, e. g., reducing recycling and mitigating effects of high heat and radiation fluxes
- Dramatic effects of lithium PFCs on plasma performance demonstrated on TFTR, T-11M, FT-U, CDX-U, TJ-II, etc.
- Recent NSTX experiments have shown significant and recurring benefits of lithium PFCs including:
  - Reduced plasma density early in discharge
  - ELM suppression and longer pulse length
  - Improved energy confinement
  - Reduced flux consumption
  - Broader electron temperature profile
  - Reduced scrapeoff layer plasma density

#### Two LIThium EvaporatoRs (LITERs) oriented for coating NSTX divertor region with lithium









# Shutter in front of LITER exit allows rapid interruption of evaporation without cooling oven



- Helium glow discharge cleaning eliminated between shots
  - Helium no longer trapped by lithium

#### ELMs suppressed and discharge duration extended in plasmas with lithium PFC coatings



• Plasma density reduced early in discharge



## Increase in stored energy (W<sub>MHD</sub>) with lithium mostly through rise in electron stored energy (W<sub>e</sub>)





#### **TRANSP** analysis indicates increase in edge current



- Higher pedestal gradients raise edge boostrap current
  - Consistent with "second stability" and ELM suppression



#### Lithium PFC coatings reduce OH flux consumption

- Lower average loop voltages mean more efficient flux consumption
  - Internal inductance decreases as electron temperature profile broadens





## Electron temperature profile broadening observed in discharges with lithium PFC coatings





50th Annual Meeting of the APS DPP – Effects of Lithium-Coated PFCs (Kaita) November 17, 2008

### Scrapeoff layer profiles indicate density reduction with lithium-coated PFCs and suggests lowered recycling



- Modeling in progress with UEDGE multi-fluid transport code
  - Shows variation in magnitude of edge density with recycling coefficient
  - Presently matches density profile shape only in high Li deposition case
    - Suggests need to include change in transport in simulations



## Lithium coating from stream of lithium powder into scrapeoff layer similar to LITER in effect on plasma performance



No lithium; 700mg LITER; 7 mg Powder

#### Summary

- Recent NSTX experiments have shown improved
  plasma performance with lithium-coated PFCs
  - Obtained with lithium evaporation and lithium powder
  - Helium glow discharge cleaning between shots eliminated for achieving H-mode
  - Plasma density reduced in early phase of discharge
  - ELMs suppressed
  - Energy confinement improved
  - Discharge length increased
  - Flux consumption reduced
  - Electron temperature profile broadened
  - Scrapeoff layer plasma density reduced
    - Consistent with lowered recycling



## Next step in NSTX is to begin investigation of liquid lithium on plasma facing components

Liquid Lithium Divertor (LLD) to be installed on lower divertor in 2009



- Lithium in porous molybdenum surface to be kept liquid by heated copper substrate
- Objective is to determine if liquid lithium can sustain deuterium pumping beyond capability of solid lithium coatings



#### **Contributors and acknowledgments**

- H. Kugel 1), J-W. Ahn 2), J. P. Allain 7), M. G. Bell 1), R. Bell 1), J. Boedo 2), C. Bush 3),
- R. Ellis 1), D. Gates 1), S. Gerhardt 1) T. Gray 1), J. Kallman 1), S. Kaye 1), B. LeBlanc 1),
- R. Maingi 3), R, Majeski 1), D. Mansfield 1), J. Menard 1), D. Mueller 1), M. Ono 1),
- S. Paul 1), R. Raman 4), A. L. Roquemore 1), P. W. Ross 1), S. Sabbagh 5),
- H. Schneider 1), C. H. Skinner 1), V. Soukhanovskii 6), T. Stevenson 1), D. Stotler 1),
- J. Timberlake 1), W. R. Wampler 8), J. Wang 9), J. Wilgen 3), and L. Zakharov 1)
- 1) Princeton Plasma Physics Laboratory, Princeton, NJ 08543 USA
- 2) University of California at San Diego, La Jolla, CA 92093 USA
- 3) Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- 4) University of Washington, Seattle, WA 98195 USA
- 5) Columbia University, New York, NY 10027 USA
- 6) Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
- 7) Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 USA
- 8) Sandia National Laboratories, Albuquerque, NM 87185 USA
- 9) Los Alamos National Laboratory, Los Alamos, NM 97545 USA

\*Work supported in part by US DOE Contracts DE-AC02-76CH03073, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-AC05-00OR22725

#### See posters NP6.00084, NP6.00085, NP6.00087, and NP6.00112 on Wednesday morning for more details