

Supported by

OF Office of Science

Enhancement of edge stability with lithium wall coatings in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC Irvine UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Rajesh Maingi, *Oak Ridge National Lab*

R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J. Manickam, D.K. Mansfield, J.E. Menard, *Princeton Plasma Physics Lab* T.H. Osborne, P.B. Snyder, *General Atomics and the NSTX Research Team*

> 50th APS/DPP meeting Dallas, TX 17-21 November, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

ELMs routinely observed in nearly all NSTX discharges

Suppression of all ELMs with lithium wall coatings

- Lithium wall coatings improve confinement and induce ELMfree H-mode
 - Core stability limits (β_{N} ~ 5.5) encountered before edge (ELM) stability limits
 - Impurities accumulate and radiated power increases with time
- Preliminary stability analysis indicates reduction of edge n_e , P_e gradients responsible for stabilization of ELMs
 - Pedestal width increases in post-Li discharges
 - Pre-lithium discharges unstable to n=3 (peeling-ballooning mode)
 - Post-lithium discharges marginally stable
 - Instability growth rates reduced by 70-100% in post-lithium discharges

ELM-free H-mode induced by lithium wall coatings

- Pre-Li, Post-Li
- Lower NBI to avoid β limit
- Lower n_e
- Similar stored energy
- H-factor 40%[↑] (more than hi δ,κ)
- Higher P_{rad} /P_{heat}
- ELM-free, reduced divertor recycling

50th APS/DP Meeting: R. Maingi (C03.06: enhanced edge stability with lithium wall coatings)

Global β_N limit encountered before edge stability limit with lithium coatings

()) NSTX

50th APS/DP Meeting: R. Maingi (C03.06: enhanced edge stability with lithium wall coatings)

() NSTX

50th APS/DP Meeting: R. Maingi (C03.06: enhanced edge stability with lithium wall coatings)

Edge stability analysis procedure

- EFIT run at Thomson profile times for ψ_N mapping
- Profile fitting of multiple time slices with standard procedures used as target for kinetic EFITs
 - Pre-lithium discharge profiles from last 20% of ELM cycle selected
 - Post-lithium discharge profiles used in 100-200 msec windows
- Free boundary kinetic EFITs run to match kinetic pressure profiles
 - Edge bootstrap current computed from Sauter model
 - Stability evaluated with PEST
- Fixed boundary kinetic EFITs run with variations of edge pressure gradient and edge current
 - Stability boundary evaluated with ELITE

n=3 mode most unstable from PEST analysis on kinetic EFIT

17-21 Nov. 2008

Edge profiles close to unstable n=3 peeling mode from ELITE analysis National Laboratory

ELM precursor with n=3 observed in magnetics

 Discharge with optimal ELM timing relative to Thomson pulses chosen for stability analysis

✓ 3 ELMs in last 20% of ELM cycle

- Magnetic fluctuation spectrum from 40-60kHz analyzed near ELM at t=0.382s sec
- n=3 pre-cursor oscillation identified

Enhancement of edge stability observed with lithium wall coatings

- Lithium wall conditioning induces ELM-free H-mode
 - H-factor increased by 50%
 - Global stability limits ($\beta_N \sim 5.5$) encountered before edge (ELM) stability limits
 - $-T_e$, T_i increase and profiles change substantially
 - ELM-free phases increase gradually with lithium deposition, with discharges eventually becoming ELM-free
 - Impurities accumulate and radiated power increases with time
- Preliminary stability analysis indicates reduction of edge n_e, P_e gradients responsible for stabilization of ELMs
 - Pre-lithium discharges unstable to n=3 (peeling-ballooning mode)
 - n=3 pre-cursor found in magnetics data
 - Post-lithium discharges marginally stable
 - Instability growth rates reduced by 70-100% in post-lithium discharges