

Supported by

Global Mode Stability and Active Control in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

v1.4

S.A. Sabbagh¹, J.W. Berkery¹, R.E. Bell², J.M. Bialek¹, S. Gerhardt², R. Betti³, D.A. Gates², B. Hu³, O.N. Katsuro-Hopkins¹, B. LeBlanc², J. Levesque¹, J.E. Menard², J. Manickam², K. Tritz⁴

¹Department of Applied Physics, Columbia University, New York, NY, USA ²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA ³University of Rochester, Rochester, NY, USA ⁴Johns Hopkins University, Baltimore, MD, USA

50th Annual Meeting of the Division of Plasma Physics American Physical Society

> November 17, 2008 Dallas, TX

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep U Quebec

Research advances to understanding mode stabilization physics and reliably maintaining high beta plasmas

Outline

- Active control of beta amplified
 n = 1 fields / global instabilities
- Mode dynamics during control
- Kinetic effects on RWM stabilization
- T_i influence on non-resonant magnetic braking

Active RWM control and error field correction maintain high β_N plasma

- \square n = 1 active, n = 3 DC control
 - $n = 1 \text{ response } \sim 1 \text{ ms} < 1/\gamma_{\text{RWM}}$
 - $\square \quad \beta_N / \beta_N^{\text{no-wall}} = 1.5 \text{ reached}$
 - \Box best maintains ω_{ϕ}
- □ NSTX record pulse lengths
 - limited by magnet systems
 - n > 0 control first used as standard tool in 2008
- □ Without control, plasma more susceptible to RWM growth, even at high ω_{ϕ}
 - Disruption at $\omega_{\phi}/2\pi \sim 8$ kHz near q = 2
 - Factor of 2 higher than marginal ω_{ϕ} with n = 3 magnetic braking (Sabbagh, et al., PRL **97** (2006) 045004.)

NP6.00082 Menard - Optimized EFC

Probability of long pulse and <β_N>_{pulse} increases significantly with active RWM control and error field correction

- Standard H-mode operation shown
 - I_p flat-top duration > 0.2s (> 60 RWM growth times)

□ Control allows $<\beta_N>_{pulse} > 4$ □ β_N averaged over I_p flat-top

During n=1 feedback control, unstable RWM evolves into rotating global kink

Experimental RWM control performance consistent with theory

0 NSTX

APS DPP 2008 – CO3.09 Global Mode Stability / Active Control in NSTX (S.A. Sabbagh)

November 17th, 2008

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental stability

- Simple critical ω_φ threshold stability models or loss of torque balance do not describe experimental marginal stability
 Sontag, et al., Nucl. Fusion 47 (2007) 1005.
- □ Kinetic modification to ideal MHD growth rate
 - Trapped and circulating ions, trapped electrons
 - Alfven dissipation at rational surfaces
- Stability depends on

□ Integrated
$$\underline{\omega}_{\phi}$$
 profile: resonances in δW_{κ} (e.g. ion precession drift)

Particle <u>collisionality</u>

<u>*@*_profile</u> (enters through ExB frequency)

 $\gamma \tau_{W} = -\frac{\partial W_{\infty} + \partial W_{K}}{\partial W_{L} + \partial W_{K}}$

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

<u>Trapped ion component of δW_{κ} (plasma integral)</u>

$$\delta W_{K} \propto \int \left[\frac{\omega_{*_{N}} + \left(\hat{\varepsilon} - \frac{3}{2}\right)\omega_{*_{T}} + \omega_{E} - \omega - i\gamma}{\left\langle \omega_{D} \right\rangle + l\omega_{b} - i\nu_{eff}} + \omega_{E} - \omega - i\gamma \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \quad \leftarrow \text{Energy integral}$$
precession drift bounce collisionality NP6.00101 Berkery

Kinetic modifications show decrease in RWM stability at relatively high V_b – consistent with experiment

Stronger non-resonant braking at increased T_i

- Observed nonresonant braking using n = 2 field
- Li wall conditioning produces higher T_i in experiment
 - Expect stronger neoclassical toroidal viscosity at higher T_i $(-d\omega_d/dt \sim T_i^{5/2} \omega_d)$
 - At braking onset, T_i ratio^{5/2} = $(0.45/0.34)^{5/2} \sim 2$
 - Consistent with measured $d\omega_{\phi}/dt$ in region of strongest damping

<u>NTV theory</u>: J-K. Park: GI1.00005 K. Shaing: JP6.00109

Advances in global mode feedback control, kinetic stabilization physics and magnetic braking research

- □ Active n = 1 control, DC n = 3 error field correction maintain high β_N plasma over ideal $\beta_N^{\text{no-wall}}$ limit for long pulse
 - Growing RWM converts to kink that stabilizes; can yield tearing mode
- Active control performance compares well to theory
 - **G** Significant β_N increase expected for ITER with proposed internal coil
- Kinetic modifications to ideal stability can reproduce behavior of observed RWM marginal stability vs. V₆
 - Simple critical rotation threshold models for RWM stability inadequate
- Non-resonant V_o braking increases with increased T_i consistent with NTV
 - Braking observed using n = 2 applied field in 2008