

Supported by

Overview of Results from the NSTX FY09 Run

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Roger Raman University of Washington For the NSTX Research Team

This work supported by U.S. DOE Contracts # DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08

> 51st Annual Meeting of the Division of Plasma Physics November 2-6, 2009 Atlanta, Georgia

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep U Quebec

NSTX Studies High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Aspect Ratio	1.27 – 1.6
Toroidal Field	0.3 – 0.55
Plasma Current	≤ 1.5 MA
Central Temperature	1 – 6 keV

New Capabilities for 2009:

- Routine use of Li (80% of discharges)
 - New Li coating methods
- CHI Absorber PF coils
- HHFW antenna grounding modified & system commissioned
- Operation with Reversed TF

Achieved Highly Reliable Scenario with High-κ, High-β_N 60-65% Non-Inductive Fraction

- Key features for this scenario
 - High elongation to increase bootstrap fraction: $f_{BS} \propto 1 + \kappa^2$
 - High confinement provided by lithium conditioning and RWM feedback/DEFC
 - All cases limited by I²t limits on the TF coil.
- Scenario then extended to higher normalized current I_N=I_P/aB_T
 - High elongation assists in avoiding edge-q limits for high normalized current
 - Long pulse obtained with $<\beta_T>>23\%$
 - sustained periods with $\beta_{T}\text{--}30\%$
 - Provide a severe test of MHD control techniques at ST-CTF relevant parameters

NSTX D. Gates JO4.4

ITPA MDC-2 & 17

HHFW: Moved Strap Ground From End to Center to Reduce Voltage by Factor Two for Same Strap Current

Maintained coupling through L-H transition in presence of ELMs

- System quickly commissioned to previous power levels (2-3 MW)
 - Additional conditioning, combined with improved ELM/arc discrimination should allow $P_{RF} > 5MW$

P_{L-H} / n_e Same for He and D_2 with RF Heating P_{L-H} Increases With Higher n=3 Field Perturbation

() NSTX S.M. Kaye, presented by Canik, U04.6

ELM Pacing Developed With Pulsed Non-Resonant Fields and Vertical Jogs

ELM Pacing Via Vertical Jogs

(0)**NSTX** Canik, UO4.6

NSTX Overview

ITPA PEP 25

Locking Density Decreases as Beta Increases

Previous work has focused on low beta plasmas

At high β, EF amplification due to plasma response leads to lower locking density

(III) NSTX Park, PP8.51

NSTX Overview

ITPA MDC-2

Stronger braking with constant n = 3 applied field as ω_E reduced – accessing superbanana plateau NTV regime

- Torque <u>not</u> $\propto 1/\omega_{\phi}$ (non-resonant)
 - NTV in "1/v regime" ($|nq\omega_{E}| < v_{i}/\epsilon$ and $v_{i}^{*} < 1$)
 - Stronger braking expected when $\omega_{\rm E} \sim 0$ (superbanana plateau)

WNSTX

ITPA MDC-12

8

Successful β_N feedback at varied plasma rotation levels

- Prelude to ω_{ϕ} control
 - Reduced ω_φ by n = 3 braking does not defeat FB control
 - Increased P_{NBI} needed at lower ω_{ϕ}
- Steady β_N established over long pulse
 - independent of ω_{ϕ} over a large range

S.A. Sabbagh, S. Gerhardt, D. Mastrovito, D. Gates

Controlled Triggering of ELMs in Combination with Super Sonic Gas Injection (SGI) Used to Control Density Rise

Using Only 27kJ of Capacitor Bank Energy 300kA of CHI Started Discharge Generated and Coupled to Induction

(I) NSTX Mueller, JO4.13 Jarboe, PP8.74

NSTX Overview

Operated with reversed TF (B×∇B away from lower X-point) with I_p & NBI directions unchanged

- Easier to generate USN H-modes, even with unconditioned upper divertor plates, and Li deposited on lower divertor
- Divertor detachment
 - More structure in lower divertor heat and particle flux profiles w/Grad-B up
 - Inner divertor reattaches and heat flux profile has standard exponential character w/Grad-B up
- L-H Power Threshold
 - P_{LH} for USN similar to LSN with normal TF
 - Li has a strong effect, even in unfavorable ∇B direction
 - P_{LH} significantly reduced, even under normal B_T

Р _{NBI} (D plasma)	USN	LSN
No Li	2.5 - 3.0 MW	2.9 - 3.2 MW
200mg Li/shot	0.4 - 0.6 MW	1.15 - 1.75 MW

WNSTX Kaye (L-H)

NSTX Overview Maingi, Soukhanovskii (Divertor) Nov 3, 2009

12

Other Important Results From NSTX

- Surface dust detected remotely for first time ITPA DSOL-21
 Skinner XP8.60, Friday, Ses. IX, 9:30AM Post-Deadline posters
- Lowest P_{L-H} at largest X-point radius
 - R. Maingi
- Te profiles flatten with GAE activity ITPA EP-2
 - Tritz PP8.61, Wed. 2pm, NSTX session
- Fast particle population has stabilizing effect on RWMs ITPA MDC-2
 - Berkery GI3.5, Tues PM invited poster session
- τ_E is weakly dependent on β_T ITPA TC-1
 - S.M. Kaye
- NTM onset delayed by Li, appears sooner with Ne TPA MDC-14

- Volpe PP8.52, Wed. 2pm, NSTX session