

U.S. DEPARTMENT OF

ENERGY

Plasma Response to Lithium-Coated Plasma-Facing Components in NSTX*

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U Purdue U SNL** Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

M.G. Bell

H. Kugel, D. Mansfield, R. Kaita, S. Gerhardt, S. Paul, R.E. Bell *(PPPL)*, R. Maingi, J. Canik *(ORNL),* **NSTX Team**

APS-DPP 51st Annual Meeting Atlanta, November 1 – 5, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

*Work supported by US DOE contract no. DE-AC02-09CH11466

Dual "LITERs" Replenish Lithium Layer on Lower Divertor Between Tokamak Discharges

- Each evaporates 1 40 mg/min with lithium reservoir at 520 630°C
- Rotatable shutters interrupt lithium deposition during discharges & HeGDC
- Withdrawn behind airlocks for reloading and initial melting of lithium charge
- Reloaded LITERs 6 times during 2009 run (Mar Aug): ~300g deposited
 - ~80% of plasmas in latter part of 2009 run preceded by lithium evaporation
- Also used a "dropper" to introduce lithium powder into plasma SOL

Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

M.G. Bell / DPP09 / 091102

Lithium Reduces Deuterium Recycling but Need to Increase Fueling to Avoid Early Locked Modes

- 1-D tangential camera for edge D_{α} emission shows greatly reduced neutral D density across outboard midplane with lithium
- Lower density achievable early in discharges both with and without lithium but likelihood of deleterious locked modes increases
 - Extensive HeGDC, He ohmic- or HHFW-heated plasmas also reduce recycling

• H-mode threshold power reduced by factor ~2 by lithium coating

DNSTX

Improvement in Electron Confinement Arises from Broadening of Temperature Profile

- TRANSP analysis confirms electron thermal transport in outer region progressively reduced by lithium
- Fast-ion contribution to total energy increased
- Thermal ion confinement remains close to neoclassical level both with and without lithium

Broader T_e Profile with Lithium Coating Reduces Both Inductive and Resistive Flux Consumption

- Bootstrap current fraction also increases
- Critical issue for development of low-aspect ratio tokamaks

 Reduction occurs despite increase in <Z_{eff}> in ELM-free H-modes after lithium coating

NSTX

Lithium Concentration in Plasmas Remains Low but Carbon Concentration Rises with Lithium Coating

M.G. Bell / DPP09 / 091102

0DNSTX

- Quantitative measurements of C⁶⁺, Li³⁺ with charge-exchange recombination spectroscopy
- $n_{c}/n_{Li} \sim 100$
- Hollow profiles early for both C and Li fill in as time progresses

Metals Responsible for Most of the Increase in **Radiation When ELMs Suppressed by Lithium**

M.G. Bell / DPP09 / 091102

- Radiated power centrally peaked in **ELM-free discharges**
- VUV and SXR spectra show iron lines (Fe X – XVIII) increasing during ELM-free periods
- Radiated power profile remains hollow when ELMs are present
 - Metals still present early but do not accumulate
- If increase in radiation is ascribed to iron-like metals:
 - $n_{"Fe"}/n_{e} \sim 0.1\%$
 - $-\Delta Z_{eff}$ ("Fe") ~ 0.3
- Dependence of rate of rise of radiation on I_{p} suggests sputtering by unconfined NB ions is source

External Non-Axisymmetric Coils Can *Induce* Repetitive ELMs in Discharges with Lithium Coating

Induced ELMs reduce n_e, P_{rad}, Z_{eff} with small effect on plasma energy

ONSTX

Lithium Coating of Carbon PFCs Has Shown Benefits for Divertor Plasma Operation in NSTX

- Improves discharge reproducibility
- Reduces hydrogenic recycling
 - Eliminates need for helium glow-discharge cleaning between shots
- Reduces H-mode threshold power by factor 2
- Improves confinement
 - Electron confinement increased up to 40%
- Enables longer pulse lengths
 - Broader $T_{\rm e}$ reduces both inductive and resistive flux consumption
 - Active error field correction and mode control suppress MHD instability
- Suppresses ELMs in H-mode plasmas
 - ELM suppression increases carbon and high-Z metallic impurities
 - Lithium concentration remains very low
 - Metals responsible for secular rise in central radiation
 - Can trigger ELMs with external coils to reduce deleterious effects of impurities with small impact on confinement

Other Lithium-Related Presentations

JO4.5	A.C. Sontag et al.	Discharge Evolution Control via 3D Field ELM Pacing in NSTX
JO4.8	C.H. Skinner <i>et al.</i>	Deuterium retention in NSTX with lithium conditioning
Poster session PP8, Wednesday November 4, 2:00pm Grand Hall East		
PP8.36	D.K. Mansfield et al.	Continuation of Lithium Aerosol Injection Experiments on NSTX
PP8.37	V. Soukhanovskii <i>et al.</i>	Modifications in divertor and scrape-off layer conditions with lithium coatings in NSTX
PP8.38	S. Paul <i>et al.</i>	Dependence of impurity accumulation on Ip and the outer gap in the presence of lithium deposition in NSTX
PP8.39	J.K. Lepson <i>et al.</i>	Identification and time evolution of impurities in NSTX plasmas
PP8.40	C.N. Taylor <i>et al.</i>	Time dependent chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite surfaces
PP8.41	R.D. Smirnov <i>et al.</i>	Modeling of low-recycling divertor with lithium coating in NSTX
PP8.42	F. Scotti <i>et al.</i>	Modeling of Balmer series deuterium spectra with the Cretin code for diagnosing the inner divertor re-attachment threshold in NSTX discharges with lithium coatings
PP8.47	S. Ding <i>et al.</i>	Characteristics of energy transport of Li- and non-Li-conditioned plasmas in NSTX
Posters on the NSTX Liquid Lithium Divertor		
PP8.44	H.W. Kugel <i>et al.</i>	Status of National Spherical Torus Experiment Liquid Lithium Divertor
PP8.45	J. Kallman <i>et al.</i>	Development of Operational Scenarios and Edge Diagnostics for the NSTX Liquid Lithium Divertor
PP8.46	R. Kaita <i>et al.</i>	Diagnostics for Evaluating Performance of NSTX Liquid Lithium Divertor
ONSTX	M.G. Bell / DPP09 / 0	091102 11

Lithium Affects ELMs Through Changes in Temperature and Pressure Profile at Edge

Multiple timeslices mapped into composite profiles using EFIT equilibrium

Also Investigated Lithium Coating by Dropping a Stream of Lithium Powder into SOL

- Lithium powder (~40µm) introduced by oscillating a piezo-electric diaphragm with a hole in the center on which the powder is piled
- Typical flow rates 5 80 mg/s: well tolerated by plasma, even in startup
- In initial 2008 experiment, improved confinement, reduced flux consumption
- In 2009, 50 100 mg powder injected, but improvement less reliable

In 2010, NSTX Will Begin Investigating Liquid Lithium on Plasma Facing Components

Liquid Lithium Divertor (LLD)

- Replace rows of graphite tiles in outer lower divertor with 4 segmented plates
- •Semi-porous (~50%) plasma-sprayed molybdenum surface (~150µm) on copper plate with temperature control
 - Capability to heat to >400C
 (Li melting point 180°C)
- Initially supply lithium with LITERs and possibly lithium powder dropper
- Evaluate capability of liquid lithium to sustain deuterium pumping in high-power tokamak environment
 - Laboratory measurements in PISCES and experience in CDX-U show that liquid has much higher capacity for deuterium retention than solid