

Supported by

Heat flux deposition for different ELM types and 3-D field application in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U Purdue U** SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

J-W. Ahn¹, T.K. Gray¹, A. Herrmann², J.M. Canik¹, R. Maingi¹, A.L. Roquemore³, H.W. Kugel³, and V. Soukhanovskii⁴

> ¹Oak Ridge National Laboratory ² Max-Planck-Institut für Plasmaphysik ³Princeton Plasma Physics Laboratory ⁴Lawrence Livermore National Laboratory

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Divertor heat flux measurement in NSTX

IR image of different ELMs

View from the top of NSTX 96x32 pixels, 6.3kHz

IR image of different ELMs

Measured heat flux profiles during ELMs

Type-III ELMy H-mode 96x32 pixels, 6.3kHz

ELM resolved heat flux profiles obtained:

Location of peak heat flux shifts outward

- PFR profile broadens
- q_{ELM, peak} = 30-80MW/m² (Type-I) 3-10MW/m² (Type-III)

1-1.5MW/m² (Type-V)

Temporal characteristics of ELM heat deposition

ELM power and rise time closely tied with $\Delta W_{ELM}/W$

- Good linear relation between ELM power and fraction of ejected energy
- ELM rise time increases with increasing fraction of ejected energy
- Very short τ_{ELM} for Type-I ELMs, need to increase IR temporal resolution

Predicted and observed 'lobes' by 3-D field application

- Connection length for field lines at the divertor target, computed by a vacuum field line tracing
- n=3 3-D field was applied externally

Predicted and observed 'lobes' by 3-D field application

Before 3-D field application

- The 'lobe' structure or the split of strike point is predicted
- Connection length for field lines at the divertor target, computed by a vacuum field line tracing
- n=3 3-D field applied

Nov 3, 2009

Predicted and observed 'lobes' by 3-D field application

- Connection length for field lines at the divertor target, computed by a vacuum field line tracing
- n=3 3-D field applied

After 3-D field application

- The 'lobe' structure or the split of strike point is predicted and observed by the IR data
- The time response is consistent with the field line penetration time, 4-5ms

Comparison of profiles with field line tracing code

- Measured heat flux profile (red) overlaid with vacuum field line tracing plot
- Distribution of lobe locations qualitatively match
- Exact locations have some difference between the two
- → Field line tracing code tend to put strike point positions more widely distributed

Before and after 3-D field: change in divertor profiles

- The formation of lobes in both heat and particle profiles shortly after the 3-D field application is clearly seen
- It is not clear if the change in peak values is purely due to the 3-D field effect, investigation is in progress

Summary and future work

New high speed IR camera successfully measured transient heat flux onto the divertor target and the total ejected energy by ELMs

- ΔW_{ELM}/W = 10-20% (type-I), 0.5-3% (type-III), 0.02-0.2% (type-V)
- Order of ELM rise time: Type-I < Type-III < Type-V
- Fraction of ejected energy increases with ELM power and ELM rise time

Split strike points by the application of 3-D fields in H-mode were observed

- Measured heat and particle flux profiles clearly show multiple local peaks, representing striations at the divertor target, shortly after 3-D field application
- The location and spacing of the observed lobes were approximately consistent with the vacuum field line tracing result
- Hardware improvement for higher frame rate up to 20kHz being planned
- 2-color IR system to remove lithium coating effect on surface emissivity

This work was supported by the US DOE, contract numbers DE-AC05-000R22725, DE-AC02-09CH11466, and DE-AC52-07NA27344