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Introduction and Preview

• NSTX research utilizes powerful tools for error field (EF)
research.
– Set of 6 midplane radial field coils permits application of n=1, 2, & 3

fields to high-β plasmas.
– IPEC code is a powerful tool for EF studies.

• Studies of n=1 error field penetration in high-β plasmas.
– Plasma response physics amplifies the externally applied fields,

increasing the sensitivity to error-field penetration and disruption.

• Studies of non-resonant error field detection and correction.
– Determined that there is an n=3 EF in NSTX, due to the out-of round

vertical field coil.

More detailed discussion of all these points in Poster PP8.00051, J-K. Park, Wed. afternoon 
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The Ideal Perturbed Equilibrium Code (IPEC) is a Powerful
Tool for Understanding Error Field Effects

• IPEC1 gives ideal 3-D free-boundary
tokamak equilibria
– Solved the perturbed force balance

equation subject to constraint that
resonant magnetic perturbation
vanishes at each surface.

– Relevant description of perturbed
plasmas before the onset of error field
penetration

• IPEC calculates surface deformation
including ideal plasma response
effects such as shielding currents,
field amplification, and poloidal
coupling.
– Shielding current determines locking

properties.
– Lagrangian variation of the field

strength determines NTV transport

Vacuum Superposition
Islands and Stochastic Regions

IPEC
Surface Deformation

[1] J. Park et al, Phys. Plasmas 14, 052110 (2007) 

Application of n=3 Fields to a
High-βN Equilibrium
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Increased Error-Field Sensitivity Observed at Higher-βN

• Varied Pinj, IP, and BT to achieve
different βN at fixed q95.
– Beneath the no-wall limit in both

cases (no RWM!)
• Apply ramping n=1 field using the

EFC coils.
• Measure the time of mode

penetration using the internal
resistive wall mode sensors.

• β-dependence of locking at near
identical density.
– Higher-βN locks with ~600 Amps of

n=1 current
– Low-βN locks with ~900 Amps of

n=1 current

Increased error-field sensitivity at higher-βN!1,2

[1] R.J. La Haye et al., Nuclear Fusion 32, 2119 (1992)
[2] H. Reimerdes et al., Nuclear Fusion 49, 1, (2009) 

Plasma Current

βN

Line Average Density

Locked Mode

EFC Coil Current
βN~3.
In=1≈900A

βN~3.75
In=1≈600A
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The Resonant Field that Drives Islands can be Amplified by
the Plasma at High-βN

• EFC coil currents and
vacuum resonant
fields are not the
correct quantities
when considering
locking.

• The resonant field
driving islands can
amplified at high-βN.

Vacuum Field
Vacuum + Plasma
Response (IPEC)
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Linear Correlation Between Resonant Field for Penetration
and Density Can be Restored Using IPEC

• Compare the resonant 2/1 amplitude to the line average density, at the time of mode
penetration.

• Wide variety of data in the scan:
– Ohmic L-mode plasma at low density
– NBI-heated H-mode at high density.

• IPEC results demonstrate importance of plasma response:
– Vacuum: Linear scaling with density fails; error field penetration at high-β seems

anomalously easy.
– IPEC: Error field penetration threshold scales with density.
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Non-Resonant (n>1) Error Fields Observed in NSTX

• Use a long-pulse high-βN discharge.
• Apply n=3 fields of two different

polarities, many amplitudes.
• Asymmetric response in the pulse

length:
– Discharge with 1000 A applied n=3

field disrupts before that with -1000 A.
• Asymmetric response in the angular

momentum:
– Discharge with In=3=+1000 A has less

angular momentum before the
disruption than that with In=3= -1000 A

There is an intrinsic n=3 error field.

IP

βN

Angular Momentum

IEFC
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Experiments Indicate that the Vertical Field Coils
are the Source of the Error Field

• Likely sources of the EF:
– Vertical Field Coil → Function of IP
– Radial Field Coil → Function of IP, κ
– Toroidal Field Coil → Function of BT

• Choose 6 configurations with different
values of IP, BT, and κ.

• For each configuration, determine the
optimal n=3 correction

• Optimal correction correlates well with the
current in the vertical field coil.

• Correlation not as strong with the other coils:
– Correlation coefficients not as large.
– Best fit lines do not extrapolate to zero

correction at zero coil current.

Vertical Field Coil Current (kA)
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Correction is Consistent With Known Out-of-Round
 Vertical Field Coil

• Vertical field coils have a dominantly n=3
radial variation.

– Makes an n=3 error field.
• Optimal vacuum correction:

• Experimental correction:
! 

I
EFC

I
PF"5

#18 A /kA
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• Computed the expected braking torque
using the IPEC total field and generalized
NTV theory.1

• Predicts minimum total torque at

• Magnitude of the torque is consistent with
the observed magnetic braking.

! 

I
EFC

I
PF"5

#15 A /kA

Experimental
Correction

IPEC+
Generalized NTV

[1] J. Park et al, Phys. Rev. Lett. 102, 065002 (2009) 
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Error Fields with n=2 Appear to be Beneath the
Detection Threshold

• Utilize a long-pulse, high-β
discharge.
– Reference shots suffer an RWM

followed by disruption at t=~0.7
sec.

• Apply n=2 fields of various
phases.

• n=2 fields always cause the
disruption to occur earlier.

• Momentum damping occurs in all
cases with applied fields.

• Infer that n=2 error fields, if
present, are small.
– Consistent with modeled shape

of the VF coil producing a
dominantly n=3 EF.

 

IP

βN

Angular Momentum

IEFC
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NSTX device and IPEC code provide a powerful combination
for understanding high-β error-field physics

• Error fields can penetrate and disrupt a high-β plasma more easily
than might be expected from the low-β density scaling.
– The plasma can amplify the error field.
– Linear dependence of the threshold on density can be recovered

when the total resonant field (vacuum + plasma response) is
considered.

• Non-resonant error fields are present in NSTX, and can be
corrected.
– The observed n=3 error fields is experimentally found to scale with

the vertical field coil current.
– The correction magnitude and phase is consistent with the known

out-of-round shape of the coil, when plasma response effects
included.

– Error fields with n=2, however, appear to be negligibly small.

More detailed discussion of all these points in Poster PP8.00051, J-K. Park, Wed. afternoon 


