

Supported by

Error Field Physics and Correction at High **Beta in NSTX**

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar **Nova Photonics** New York U **Old Dominion U** ORNL PPPL **Princeton U** Purdue U Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado

U Illinois U Maryland

MIT

PSI

SNL

- **U** Rochester
- **U** Washington
- **U Wisconsin**

Stefan Gerhardt, PPPL

J. Menard (PPPL), J-K. Park (PPPL) R. Bell (PPPL), D. Gates (PPPL), B. LeBlanc (PPPL), S. Sabbagh (CU), H. Yuh (Nova Photonics) and the NSTX Research Team

51st APS Division of Plasma Physics Meeting Nov. 3rd . 2009

Work supported by US DOE contract no. DE-AC02-09CH11466

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew II loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Introduction and Preview

- NSTX research utilizes powerful tools for error field (EF) research.
 - Set of 6 midplane radial field coils permits application of n=1, 2, & 3 fields to high- β plasmas.
 - IPEC code is a powerful tool for EF studies.
- Studies of n=1 error field penetration in high- β plasmas.
 - Plasma response physics amplifies the externally applied fields, increasing the sensitivity to error-field penetration and disruption.
- Studies of non-resonant error field detection and correction.
 - Determined that there is an n=3 EF in NSTX, due to the out-of round vertical field coil.

More detailed discussion of all these points in Poster PP8.00051, J-K. Park, Wed. afternoon

The Ideal Perturbed Equilibrium Code (IPEC) is a Powerful Tool for Understanding Error Field Effects

- IPEC¹ gives ideal 3-D free-boundary tokamak equilibria
 - Solved the perturbed force balance equation subject to constraint that resonant magnetic perturbation vanishes at each surface.
 - Relevant description of perturbed plasmas before the onset of error field penetration
- IPEC calculates surface deformation including ideal plasma response effects such as shielding currents, field amplification, and poloidal coupling.
 - Shielding current determines *locking* properties.
 - Lagrangian variation of the field strength determines *NTV transport*

Application of n=3 Fields to a High- β_N Equilibrium

Vacuum SuperpositionIPECIslands and Stochastic RegionsSurface Deformation

[1] J. Park et al, Phys. Plasmas 14, 052110 (2007)

Increased Error-Field Sensitivity Observed at Higher- β_N

- Varied P_{inj}, I_P, and B_T to achieve different β_N at fixed q₉₅.
 - Beneath the no-wall limit in both cases (no RWM!)
- Apply ramping n=1 field using the EFC coils.
- Measure the time of mode penetration using the internal resistive wall mode sensors.
- β-dependence of locking at near identical density.
 - Higher- β_N locks with ~600 Amps of n=1 current
 - Low- β_N locks with ~900 Amps of n=1 current

Increased error-field sensitivity at higher- β_N !^{1,2}

[1] R.J. La Haye et al., Nuclear Fusion **32**, 2119 (1992) [2] H. Reimerdes et al., Nuclear Fusion **49**, 1, (2009)

The Resonant Field that Drives Islands can be Amplified by the Plasma at High- β_N

- EFC coil currents and vacuum resonant fields are not the correct quantities when considering locking.
- The resonant field driving islands can amplified at high-β_N.

Linear Correlation Between Resonant Field for Penetration and Density Can be Restored Using IPEC

- Compare the resonant 2/1 amplitude to the line average density, at the time of mode penetration.
- Wide variety of data in the scan:
 - Ohmic L-mode plasma at low density

Linear Correlation Between Resonant Field for Penetration and Density Can be Restored Using IPEC

- Compare the resonant 2/1 amplitude to the line average density, at the time of mode penetration.
- Wide variety of data in the scan:
 - Ohmic L-mode plasma at low density
 - NBI-heated H-mode at high density.
 - Vacuum: Linear scaling with density fails; error field penetration at high- β seems anomalously easy.

Linear Correlation Between Resonant Field for Penetration and Density Can be Restored Using IPEC

- Compare the resonant 2/1 amplitude to the line average density, at the time of mode penetration.
- Wide variety of data in the scan:
 - Ohmic L-mode plasma at low density
 - NBI-heated H-mode at high density.
- IPEC results demonstrate importance of plasma response:
 - Vacuum: Linear scaling with density fails; error field penetration at high- β seems anomalously easy.
 - IPEC: Error field penetration threshold scales with density.

Non-Resonant (n>1) Error Fields Observed in NSTX

- Use a long-pulse high- β_N discharge.
- Apply n=3 fields of two different polarities, many amplitudes.
- Asymmetric response in the pulse length:
 - Discharge with 1000 A applied n=3 field disrupts before that with -1000 A.
- Asymmetric response in the angular momentum:
 - Discharge with $I_{n=3}$ =+1000 A has less angular momentum before the disruption than that with $I_{n=3}$ = -1000 A

There is an intrinsic n=3 error field.

Experiments Indicate that the Vertical Field Coils are the Source of the Error Field

- Likely sources of the EF:
 - − Vertical Field Coil \rightarrow Function of I_P
 - − Radial Field Coil → Function of I_P , κ
 - Toroidal Field Coil \rightarrow Function of B_T
- Choose 6 configurations with different values of I_P , B_T , and κ .
- For each configuration, determine the optimal n=3 correction

- Optimal correction correlates well with the current in the vertical field coil.
- Correlation not as strong with the other coils:
 - Correlation coefficients not as large.
 - Best fit lines do not extrapolate to zero correction at zero coil current.

10

Correction is Consistent With Known Out-of-Round Vertical Field Coil

- Vertical field coils have a dominantly n=3 radial variation.
 - Makes an n=3 error field.
- Optimal vacuum correction: $\frac{I_{EFC}}{I_{PF-5}} \approx 18 A/kA$ •
- Experimental correction: $I_{EFC} / I_{PF-5} \approx 14 \ A/kA$
- Computed the expected braking torque using the IPEC total field and generalized NTV theory.¹
 - Predicts minimum total torque at $I_{EFC}/I_{PF-5} \approx 15 A/kA$
- Magnitude of the torque is consistent with the observed magnetic braking.

[1] J. Park et al, Phys. Rev. Lett. 102, 065002 (2009)

11

Error Fields with n=2 Appear to be Beneath the Detection Threshold

- Utilize a long-pulse, high-β discharge.
 - Reference shots suffer an RWM followed by disruption at t=~0.7 sec.
- Apply n=2 fields of various phases.
- n=2 fields always cause the disruption to occur earlier.
- Momentum damping occurs in all cases with applied fields.
- Infer that n=2 error fields, if present, are small.
 - Consistent with modeled shape of the VF coil producing a dominantly n=3 EF.

NSTX device and IPEC code provide a powerful combination for understanding high-β error-field physics

- Error fields can penetrate and disrupt a high- β plasma more easily than might be expected from the low- β density scaling.
 - The plasma can amplify the error field.
 - Linear dependence of the threshold on density can be recovered when the total resonant field (vacuum + plasma response) is considered.
- Non-resonant error fields are present in NSTX, and can be corrected.
 - The observed n=3 error fields is experimentally found to scale with the vertical field coil current.
 - The correction magnitude and phase is consistent with the known out-of-round shape of the coil, when plasma response effects included.
 - Error fields with n=2, however, appear to be negligibly small.

More detailed discussion of all these points in Poster PP8.00051, J-K. Park, Wed. afternoon

13