

Supported by

Office of Science

Triggered Confinement and Pedestal Temperature Enhancement in NSTX H-mode Dsicharges

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis** UC Irvine UCLA UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

Rajesh Maingi, 🂐

R.E. Bell, J.M. Canik, S.P. Gerhardt, S.M. Kaye, B.P. LeBlanc, T.H. Osborne, E.D. Fredrickson, J.E. Menard, J.-K. Park, S.A. Sabbagh and the NSTX Research Team

52nd APS DPP meeting Chicago, IL USA 8-12 Nov 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Confinement and Pedestal Temperature Enhancement Triggered by an ELM: the Enhanced Pedestal H-mode

- Energy confinement in NSTX H-modes is generally 0.8-1.1* ITER98y2 scaling
 - HH98y2 is ~ 0.7-0.9 without lithium, 1.0-1.1 with lithium
 - A few next step ST designs based on ~ 50% higher τ_{E}
- An improved confinement scenario with enhanced pedestal T_e,
 - T_i in H-mode observed several few years ago
 - Observed mostly in I_p ramp phase, but a few examples in flat-top
 - Triggered by large ELM, either naturally occurring or triggered with pulsed n=3 fields
 - Highest normalized $\tau_{\rm E}$ of any regime in NSTX, with HH89P \leq 3.5 and HH98y2 \leq 1.7
 - Pulse length up to 300 msec (\sim 3 τ_E)

EPH-mode phase also observed in flat-top, for up to ~ 300 msec ($\sim 3 \tau_E$)

- I_p = 0.9 MA, P_{NBI} = 3.8 MW
- $W_{MHD} \leq 350 \text{ kJ}$

• $\beta_{\rm N}$ > 6.5

- • $\tau_E \ge 80$ msec for 225 msec
- H97L ≤ 3
- Natural ELM trigger for EPH

8-12 Nov 2010

Maingi, PRL 2010

Thermal barrier: Edge T_e , T_i double, with a reduction in the edge n_e gradient, and an increase in v_{ϕ} shear

Thermal and angular momentum transport reduced in outer half of plasma

APS DPP 2010 Paper NO.005: EP H-mode Maingi

Radial shear in V_{ϕ} profile leads to large region of E_r shear during EP H-mode

D NSTX

Spatial extent of significant E_r shear region doubled in size during EP H-mode

 Spatial region of large Er shear doubled from ~ 2 cm to ~ 4 cm $\sum_{i=1}^{\infty}$ in FP H-mode

• T_i pedestal height correlates with edge toroidal rotation shear

EPH may occur naturally in recovery period following ELM/braking triggers

Comparisons with other enhanced confinement regimes

- Similarities with VH-mode
 - Very large spatial region of high E X B shear
 - Comparable τ_E enhancement with respect to scalings
 - Low recycling ELM-free scenario, with relatively low impurity accumulation
- Differences from VH-mode
 - EP H-mode triggered by an ELM
 - EP H-mode often initiated with localized drag on v_{ϕ} (often @q=3)
 - EP H-mode last for up to 3 τ_E ; terminated by e.g. RWM
- Comparison with QH-mode
 - Higher H-factor in EP H-mode, no obvious sign of EHO(?)
- Comparison with I-mode
 - Thermal transport barrier, with no enhancement of particle transport

The Enhanced Pedestal H-mode has an improved thermal barrier above H-mode, without an enhancement of particle confinement

- A second transition to enhanced confinement and high pedestal T_e , $T_i \le 700 \text{ eV}$
 - Second transition after large ELM, either natural or triggered by 3D fields
 - W_{MHD} ramps ~ linearly in time for ~ 0.1 s
 - $H_{H98y2} \le 1.7$, in an ELM-free regime
 - EP H-mode phases observed during I_p ramp or flat-top
- Common feature: edge v_{ϕ} develops large gradient, with a large drag, often near the q=3 surface
- Low loop voltage, high β_{N} (due partly to low pressure peaking factor)

✓ high performance, long pulse candidate

High β_{pol} results in high bootstrap and non-inductive fraction (f_{NI} ~ 0.65 from TRANSP)

APS DPP 2010 Paper NO.005: EP H-mode Maingi

Many outstanding question on EP H-mode

- How can we reliably trigger on demand?
 - RMP with proper spectrum? Low q_{95} ?
- What are the changes in the turbulence?
 - FIReTIP indicates 50% reduction in density fluctuations
- Does lithium enable these in some way?
 - More frequent in past few years with increasing Li usage
- What is the role of edge resonances?
 - q=3 special?
- Is it some combination of VH-mode and QH-mode?
 - Need to assess edge turbulence: any EHO here?
- What is the limit on achievable 'pedestal width'?
 - Should we be calling this a pedestal even?

High β_N phase maintained for 2 τ_E

High bootstrap and non-inductive fractions, high thermal τ_{F} during EPH phase

Long pulse EPH – density still evolving slowly, Z_{eff} rising, but P_{rad} seems reasonable

APS DPP 2010 Paper NO.005: EP H-mode Maingi

EPH-mode would make a decent ASC TSG high performance, long pulse target

- Initiating EPH-mode:
 - Lithium conditioning for ELM-free conditions
 - Either fast RMP trigger of a large ELM(5 Hz?), or longer RMP pulse with several ELMs: both seem to work
 - Since density profile control may be important, *supersonic* gas injection (SGI) may provide easier access (longest pulse EPH had SGI)
- Sustaining EPH-mode:
 - Use β feedback + n=1 feedback to avoid β limit
 - Pre-program NBI reduction, if needed
 - Raise B_t or drop I_p or more shaping to delay q₀=1 crossing

The Enhanced Pedestal H-mode has favorable characteristics and improved long pulse prospects

- EP H-modes occur naturally following large ELMs, or can be triggered with 3D fields
- Recently, EPH phases were obtained during I_p flat-top for several τ_{E}
- With the advent of β feedback on NBI and good n=1 feedback, extending the pulse length and using EPH as a high-performance target will be attempted in FY10 in NSTX
- ✓ Experiments will be lead by Canik and Gerhardt

EP H-mode profiles evolve continuously, although recovery from trigger takes a little time

 Discharge had Li evaporation to improve performance in regular Hmode

EPH-mode can have transient H89P up to 4

Transition to an Enhanced Pedestal H-mode enables lower pedestal $v_{e,ped}$ * ~ 0.1 in NSTX

8-12 Nov 2010 Page 22

Comparison of Standard and EP H-mode evolution

Comparison of Standard and EP H-mode profiles

8-12 Nov 2010 Page 24

3D fields used for ELM pace making may trigger EPH during periods when 3D fields switched off

Enhanced Pedestal H-mode barrier width size comparable to gyro-diameter

- Edge scale lengths for both T_i and n_c approach the gyro-diameter during EPHmode
- Ion gyroradius ρ_i ~ 0.7 cm relative to IBI, owing to combination of local T_i ~ 350 eV and and IBI ~ 0.35 T at outer midplane
 - Approaching or at the fundamental limit on the gradient scale length?
- Minimum v_{ϕ} seems to be in center of highest ∇T_i region

EPH-mode phases up to several hundred msec observed recently (more common with lithium?)

27