

Supported by

Role of plasma edge region in global stability on NSTX*

College W&M **Colorado Sch Mines** Columbia U **CompX General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

J. Menard (PPPL), Y.Q. Liu (CCFE)

R. Bell, S. Gerhardt (PPPL)

S. Sabbagh (Columbia University) and the NSTX Research Team

52nd Annual Meeting of the APS DPP November 8-12 Chicago, IL

*This work supported by US DoE contract DE-AC02-09CH11466

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBS** KAIST POSTECH ASIPP ENEA, Frascati **CEA, Cadarache IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

- 1. Experimental motivation
- 2. Role of E×B drift frequency profile
- 3. Kinetic stability analysis using MARS code
 - Comparisons with experiment
 - Self-consistent vs. perturbative approach

Error field correction (EFC) often necessary to maintain rotation, stabilize n=1 resistive wall mode (RWM) at high β_N

APS DPP 2010 – Role of plasma edge region in global stability on NSTX, J. Menard (11/09/2010)

EFC experiments show edge region with $q \ge 4$ and $r/a \ge 0.8$ apparently determine stability

- n=3 EFC \rightarrow stable
- No EFC \rightarrow n=1 RWM unstable

- n=1 EFC → stable
- No EFC \rightarrow n=1 RWM unstable

MARS is linear MHD stability code that includes toroidal rotation and drift-kinetic effects

• Single-fluid linear MHD

$$(\gamma + in\Omega)\boldsymbol{\xi} = \mathbf{v} + (\boldsymbol{\xi} \cdot \nabla\Omega)R^2 \nabla \phi$$

$$p(\gamma + in\Omega)\mathbf{v} = -\nabla \cdot \mathbf{p} + \mathbf{j} \times \mathbf{B} + \mathbf{J} \times \mathbf{Q}$$

$$-\rho[2\Omega \hat{\mathbf{Z}} \times \mathbf{v} + (\mathbf{v} \cdot \nabla\Omega)R^2 \nabla \phi]$$

$$(\gamma + in\Omega)\mathbf{Q} = \nabla \times (\mathbf{v} \times \mathbf{B}) + (\mathbf{Q} \cdot \nabla\Omega)R^2 \nabla \phi$$

$$(\gamma + in\Omega)p = -\mathbf{v} \cdot \nabla P, \qquad \mathbf{j} = \nabla \times \mathbf{Q}$$

Y.Q. Liu, et al., Phys. Plasmas 15, 112503 2008

• Mode-particle resonance operator:

 $P = p\mathbf{I} + p_{\parallel}\hat{\mathbf{b}}\hat{\mathbf{b}} + p_{\perp}(\mathbf{I} - \hat{\mathbf{b}}\hat{\mathbf{b}})$ $p_{\parallel}e^{-i\omega t + in\phi} = \sum_{e,i} \int d\Gamma M v_{\parallel}^{2} f_{L}^{1}$ $p_{\perp}e^{-i\omega t + in\phi} = \sum_{e,i} \int d\Gamma \frac{1}{2} M v_{\perp}^{2} f_{L}^{1}$ $f_{L}^{1} = -f_{\epsilon}^{0} \epsilon_{k} e^{-i\omega t + in\phi} \sum X_{m}^{u} H_{ml}^{u} \lambda_{ml} e^{-in\tilde{\phi}(t) + im\langle \dot{\chi} \rangle t + il\omega_{b} t}$ $H_{L} = \frac{1}{\epsilon_{k}} [M v_{\parallel}^{2} \vec{\kappa} \cdot \xi_{\perp} + \mu(Q_{L\parallel} + \nabla B \cdot \xi_{\perp})]$

MARS-K:
$$\lambda_{ml} = \frac{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\omega_{*T} + \omega_E] - \omega}{n(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l]\omega_b - i\nu_{eff} - \omega}$$
MARS-F:
$$\lambda_{ml} = \frac{n[\omega_{*N} + (\hat{\epsilon}_k - 3/2)\omega_{*T} + \omega_E] - \omega}{n(\langle \omega_d \rangle + \omega_E) + [\alpha(m + nq) + l]\omega_b - i\nu_{eff} - \omega}$$

+ additional approximations/simplifications in f_L^{1}

• Fast ions: MARS-K: slowing-down f(v), MARS-F: lumped with thermal

Sensitivity of stability to rotation motivates study of all components of ExB drift frequency $\omega_{F}(\psi)$

- Decompose flow of species *j* into poloidal + toroidal components: $\vec{u}_{i} = u_{\theta i}(\psi)\vec{B}_{P} + \Omega_{\phi j}(\psi,\theta)R^{2}\nabla\phi$ satisfying $\nabla \cdot \vec{u}_{j} = 0$
- Orbit-average E×B drift frequency: $\omega_E \equiv \langle \langle \vec{v}_E \cdot \nabla(\phi q\theta) \rangle \rangle$ Bounce average: $\langle \langle X \rangle \rangle \equiv \frac{1}{\tau_h} \oint X d\tau$ $\vec{v}_E = E \times B$ drift velocity F. Porcelli, et al., Phys. Plasmas 1 (1994) 470
- Ignoring centrifugal effects (ok in plasma edge), $\omega_{\rm F}$ reduces to:

NSTX edge $v_{pol} \approx$ neoclassical (within factor of ~2)

NSTX results: R. E. Bell, et al., Phys. Plasmas **17**, 082507 (2010) **Neoclassical:** W. Houlberg, et al., Phys. Plasmas **4**, 3230 (1997)

🔘 NSTX

APS DPP 2010 – Role of plasma edge region in global stability on NSTX, J. Menard (11/09/2010)

n=1 EFC profiles show impurity C diamagnetic and poloidal rotation modify $|\omega_E \tau_A| \sim 1\%$ in edge \rightarrow potentially important

• Neoclassical v_{pol} contribution to $\omega_E \tau_A \approx -0.2$ to -0.4%

A range of edge ω_E profile shapes can be stable, but unstable profiles can often be nearby

- Separation between **stable** and **unstable** profiles typically small: $\Delta(\omega_{\rm E}\tau_{\rm A}) \leq 1\%$
- $\omega_E \approx 0$ over most of edge may correlate with instability
- Edge ω_E (r) control could potentially provide RWM stabilization technique
- Motivation for RWM active feedback control remains

Kinetic stability analysis using MARS-F

Experimentally unstable case

Experimentally stable case

Comparison of unstable and stable cases

MARS-F using marginally unstable $\omega_E = \Omega_{\phi-C}$ predicts n=1 RWM to be robustly unstable \rightarrow inconsistent with experiment

MARS-F using marginally unstable full ω_E predicts n=1 RWM to be marginally unstable \rightarrow more consistent with experiment

3

(D) NSTX

8

a

9

10 11 12

Kinetic stability analysis using MARS-F

Experimentally unstable case

Experimentally stable case

Comparison of unstable and stable cases

MARS-F using stable $\omega_E = \Omega_{\phi-C}$ profile predicts n=1 RWM to be unstable \rightarrow inconsistent with experiment

MARS-F using stable full ω_E profile predicts wide region of marginal stability \rightarrow more consistent with experiment

🔘 NSTX

APS DPP 2010 – Role of plasma edge region in global stability on NSTX, J. Menard (11/09/2010)

Inclusion of v_{pol} in ω_E can sometimes modify marginal stability boundary – example: wall position variation

Calculated n=1 $\gamma \tau_{wall}$

experimentally stable profiles and b_{wall} / a artificially increased × 1.1

• Increased wall distance lowers with-wall limit to $\beta_N \sim 5.5$ • Case with $u_0=0$ has lower marginal stability limit $\beta_N \sim 5$

Kinetic stability analysis using MARS-F

- Experimentally unstable case
- Experimentally stable case

Comparison of unstable and stable cases

Inclusion of ω_{*C} in ω_{E} increases separation between stable and unstable $\omega_{E}(\psi)$ and provides consistency w/ experiment

Predictions inconsistent with experiment

Mode damping in last 10% of minor radius calculated to determine stability of RWM in n=1 EFC experiments

🔘 NSTX

Kinetic stability analysis using MARS-K

- Comparison with experiment
- Self-consistent vs. perturbative approach
- Modifications of RWM eigenfunction

MARS-K consistent with EFC results and MARS-F trends

• MARS-K full kinetic $\delta W_{K} \rightarrow$ multiple modes can be present

Mode identification and eigenvalue tracking more challenging

• Track roots by scanning fractions of experimental ω_E and δW_K :

Perturbative approach predicts unstable case to be stable → inconsistent with self-consistent treatment and experiment

- Perturbative approach uses marginally unstable fluid eigenfunction at zero rotation in limit of no kinetic dissipation
- For cases treated here, $|\delta W_{K}|$ can be >> $|\delta W_{\infty}|$ and $|\delta W_{b}|$
 - Possibility that rotation/dissipation can modify eigenfunction & stability

MARS-K self-consistent calculations for stable case indicate modifications to eigenfunction begin to occur at low rotation

- SC RWM ξ_{\perp} amplitude reduced at larger r/a
 - -Low $\omega_{\rm E} / \omega_{\rm E}$ (expt) = 0.3%, $\delta W_{\rm K} / \delta W_{\rm K}$ (expt) = 12%
 - -Reduced amplitude could reduce dissipation, stability

MARS-K self-consistent calculations indicate expt. rotation and dissipation can strongly modify RWM eigenfunction

–Does reduced edge ξ_{\perp} amplitude explain reduced stability?

Summary

- Edge rotation (q \ge 4, r/a \ge 0.8) important for RWM
 - Trends consistent with stability calculations using MARS-F
 - Provides insight, method for optimal error field correction
- Stability quite sensitive to edge ω_{E} profile
 - Essential to include accurate edge ∇p in E_r profile
 - Poloidal rotation can also influence marginal stability
- Full kinetic stability (MARS-K) consistent w/ experiment
- Perturbative treatment inconsistent overly stable
 - Edge eigenfunction strongly modified by rotation/dissipation
 - Reduction in ξ_{\perp} amplitude may reduce kinetic stabilization