

Supported by

Edge transport and turbulence reduction, and formation of ultra-wide pedestals with lithium coated PFCs in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

R. Maingi (ORNL), R.E. Bell, W.A. Guttenfelder, H.W. Kugel, B.P. LeBlanc, Y. Ren (PPPL), S. Kubota (UCLA), T.H Osborne (GA), V.A. Soukhanovskii (LLNL) and the NSTX Research Team 52nd APS-DPP

Chicago, IL Nov 9, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

- Introduction: ELM elimination and pedestal profile changes with lithium coatings
- SOLPS is used for interpretive modeling of the edge plasma
- Lithium coatings lead to widening of edge transport barrier
 - Two regions: stiff $\rm T_e$ near separatrix, reduced transport at top of pedestal
 - Measurements show reduced fluctuations with lithium
- Discussion of candidate edge transport mechanisms

Type I ELMs eliminated, energy confinement improved with lithium wall coatings

T_e, T_i increased and edge n_e decreased with lithium coatings

CAK RIDGE

APS '10 - Edge transport in NSTX discharges with lithium coated PFCs (Canik)

Peak pressure gradient moves inwards, p' and j reduced outside $\psi_N \sim 0.95$

Pre- and post-lithium discharges are modeled using SOLPS

- SOLPS (B2-EIRENE: 2D fluid plasma + MC neutrals) used to model NSTX experimental data
 - ✓ Neutrals contributions
 - ✓ Recycling changes due to lithium

Parameters adjusted to fit data	Measurements used to constrain code
Radial transport coefficients D_{\perp} , χ_e , χ_i	Midplane n _e , T _e , T _i profiles
Divertor recycling coefficient	Calibrated D_{α} camera
Separatrix position/T _e ^{sep}	Peak divertor heat flux

Procedure for fitting midplane n_e, T_e, T_i profiles

- Start with initial guess for D_{\perp} , χ_e , χ_i
- Run simulation for ~10% of confinement time
- Take radial fluxes along 1-D slice at midplane from code
 - $-\Gamma^{SOLPS}$, q_e^{SOLPS} , q_i^{SOLPS}
- Update transport coefficients using SOLPS fluxes and *experimental* profiles
 - E.g., $D^{\text{new}} = \Gamma^{\text{SOLPS}}/\text{grad}(n_e^{\text{EXP}})$
 - Here we use fits to profiles used in stability calculations (Maingi PRL '09)
- Repeat until $n_e/T_e/T_i^{SOLPS} \sim n_e/T_e/T_i^{EXP}$

Peak D_a brightness is matched to experiment to constrain PFC recycling coefficient: lithium reduces R from ~.98 to ~.9

- For each discharge modeled, PFC recycling coefficient R is scanned
 - Fits to midplane data are redone at each R to maintain match to experiment
- D_{α} emissivity from code is integrated along lines of sight of camera, compared to measured values
 - Best fit indicates reduction of recycling from R~0.98 to R~0.9 when lithium coatings are applied

Midplane and divertor profiles from modeling compare well to experiment for the pre-lithium case

CAK RIDGE

NSTX

Combining reduced recycling and transport changes gives match to measurements with lithium

Transport barrier widens with lithium coatings, broadening pedestal

- Pre-lithium case shows typical H-mode structure
 - Barrier region in D, χ_e just inside separatrix
- Pedestal is much wider with lithium
 - − D_⊥, χ_e similar outside of ψ_N ~0.95
 - Low D_⊥, χ_e persist to inner boundary of simulation (ψ_N~0.8)
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier

CAK RIDGE

NSTX

Particle and heat sources are reduced with lithium

- Pre-lithium case shows typical H-mode structure
 - Barrier region in D, χ_e just inside separatrix
- Pedestal is much wider with lithium
 - − D_⊥, χ_e similar outside of ψ_N ~0.95
 - Low D_⊥, χ_e persist to inner boundary of simulation (ψ_N~0.8)
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier

Transport barrier widens with lithium coatings, broadening pedestal

- Two regions considered
 - Top of pedestal
 - Large transport reduction
 - Bottom of pedestal
 - Transport similar
 with lithium

Outer region: T_e gradient nearly constant outside of $\Psi_N \sim 0.95$

NSTX

Nov 9, 2010

Inner region: as lithium coatings thicken, density barrier widens, pedestal-top χ_e reduced

- Several shots analyzed with increasing lithium thickness
- ELMy to reduced frequency to ELM-free
- Barrier in particle transport widens with lithium thickness
- χ_e inside $\Psi_N \sim 0.95$ gradually reduced

APS '10 – Edge transport in NSTX discharges with lithium coated PFCs (Canik)

Edge reflectometry near pedestal top shows reduced density fluctuations with lithium

Quadrature [V]

Pre-Li

- Reduced transport in inner region->higher pedestal top pressure
- Reflectometer shows reduced fluctuation level
 - Pre-lithium: strong amplitude and phase fluctuations
 - Post-lithium: little amplitude fluctuation
 - 3D simulations using Kirchoff integral indicate turbulence level reduced from ~10% to ~1% with lithium

High-k scattering diagnostic shows little change in fluctuation amplitude at $k\rho_s > 10$

0.8

0.6

0.4

<u>е</u>

- Pre-to-post lithium transition repeated, similar profile changes observed
- Fluctuations similar for $k\rho_s > 10$, some reduction at lower k for the with-lithium case

Scattering

locations

1.1

With power reduced so T_e profile matches pre-lithium case, fluctuation amplitudes show broad reduction

0.8

0.6

<u>з</u>

- Power reduced to 2 MW
- T_e profile similar to pre-lithium
- Fluctuation amplitude reduced across measured $k \rho_{s}$

18

Scattering

locations

ETG is unstable in steep gradient edge

- Investigating ETG stability with GYRO [1]
 - $-\chi_{e} \sim 2\text{-}5~(\rho_{e}{}^{2}v_{te}/L_{Te}),$ within range of nonlinear expectations
 - Electrons satisfy gyrokinetic ordering ρ_e/L_{Te} < 1/400
- ETG unstable in steep gradient region ($\psi_N > 0.92$)
 - Threshold likely set by density gradient
 - $\eta_{e,crit} \sim$ 1-1.25 calculated in AUG edge [2], compared to core criteria $\eta_{e,crit} \sim$ 0.8 [3]
- ETG stable at top of pedestal ($\psi_N = 0.88$)
 - Smaller density gradient, threshold likely sensitive to $Z_{\text{eff}}T_{e}/T_{i}$ and s/q
- Calculating thresholds and transport are work-inprogress

[1] J. Candy & R.E. Waltz, PRL (2003); [2] D. Told et al., PoP (2008);

[3] F. Jenko et al., PoP (2001)

CAK RIDGE

🔘 NSTX

Measured pedestal modifications are consistent with paleoclassical transport

- Pedestal structure model based partly on paleoclassical transport proposed
 - J.D. Callen, UW-CPTC 10-9
 - Depends on resistivity profile->Z_{eff} changes important
- Model recovers χ_e magnitude, shape, rise near separatrix, as well as modest increase with lithium outside $\psi_N \sim 0.95$
- Density profile shape changes with lithium also captured by model

Edge transport is reduced, transport barrier widened with lithium coatings

- Measured pedestal profile changes with lithium are reproduced in 2-D edge modeling
- Matching midplane profiles requires change to transport coefficients in addition to recycling
 - Transport barrier widens with lithium, giving wider pedestal
 - T_e gradient relatively unchanged outside $\psi_N \sim 0.95$
- Fluctuation measurements show reduced edge turbulence in inner pedestal region
- Future research will focus on possible transport mechanisms
 - ETG and paleoclassical possible mechanisms for edge transport

Carbon is the dominant impurity species with lithium coatings

- Measured lithium concentration is much less than carbon
 - Carbon concentration ~100 times higher
 - Carbon increases when lithium coatings are applied
 - Neoclassical effect: higher Z accumulates, low Z screened out
- Increase in n_c due to lack of ELMs
 - Can be mitigated by triggering ELMs

NSTX

CAK RIDGE

BES also shows reduced turbulence levels in post-lithium discharges

*Courtesy D.R. Smith, UW

Reflectometer analysis

Carbon is included to model Z_{eff} profile

- Sputtering of carbon included, chemical sputtering yield of 2% assumed
- Same D_⊥ for all species; carbon species given spatially constant inward convective velocity, adjusted to match measured carbon content
- Charge state distribution calculated by SOLPS, yields an estimate of Z_{eff} for comparisons to theory
- Transport modification is qualitatively unchanged with carbon

Outer region: T_e gradient nearly constant outside of $\Psi_N \sim 0.95$

- Key to ELM suppression: reduction of current for Ψ_N >.95
 - Density is reduced with lithium, but T_e unchanged
 - Pressure gradient is reduced->less bootstrap current
- Edge T_{e} ' ~ constant, critical gradient?
 - Intermediate stages shown have less lithium, same P_{NBI} as pre-lithium case

CAK RIDGE