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Motivation

• Tokamaks are not in perfect axisymmetry
– Small non-axisymmetric (3D) fields are unavoidable in tokamaks
– Non-axisymmetric fields are typically bad (Locking, tearing, braking), 

but also can be good if controlled (RMP ELM suppression)

• Theoretical understanding for 3D equilibria is required
– Non-ideal 3D codes (M3D, NIMROD,…) : Not free boundary yet…
– Ideal 3D codes (VMEC,…) : Slow and not optimal to tokamaks
– Vacuum 3D codes (Vacuum superposition) : Not in force-balance

• So, we use ideal perturbed equilibria :
– Pros: Free-boundary, precise at rational surfaces, in force-balance
– Cons: Ideal evolution, No inner-layer dynamics, etc
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DIII-D example of plasma responses to 
non-axisymmetric magnetic perturbations

• DIII-D has n=1 intrinsic error fields
– Error fields can cause locking (opening of islands)
– C-coil and I-coil can mitigate locking effects

[Park, PRL 99, 195003 (2007)] [Park, submitted to POP (2010)]

Locking is avoided
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NSTX example of plasma responses to 
non-axisymmetric magnetic perturbations

• NSTX has n=1 and n=3 intrinsic error fields
– n=3 error fields can cause magnetic braking (rotation damping) 
– EFC correction can mitigate both effects  

[Gerhardt, PPCF 52, 104003 (2010)]
[Menard, NF 50, 045008 (2010)]

Optimal correction

Magnetic braking is minmizedn=3 error fields
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Overview

• Development of Ideal Perturbed Equilibrium Code (IPEC)

• IPEC applications to tokamaks
– Plasma responses to applied perturbations
– Error field corrections and plasma locking
– Non-ambipolar transport and magnetic braking

• Control of non-axisymmetric perturbations
– Dominant external field distribution and overlap field
– ITER error field study

• Summary and Future Work
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IPEC solves ideal free-boundary perturbed equilibria 

• Given an axisymmetric equilibrium,                   , and given 
an non-axisymmetric field,          , IPEC solves

– External field is given, and the total field is determined by virtual 
surface currents (external boundary condition)

• External (vacuum)  field :
• Total (External + Plasma) field :

– Then, DCON stability code solves ideal fixed-boundary perturbed 
equilibria without islands (internal boundary condition)

0 0[ ] 0 δ δ δF j B j B pξ = = × + × − ∇
rrr r r rr r

0 0 0p j B∇ = ×
r rr

( )xB xδ
r r

0 0δ ( )p p pξ γ ξ= − ⋅∇ − ∇ ⋅
r rr r

0 0( )  and  ( )B B j B /δ ξ δ δ μ= ∇× × = ∇×
rr r r r rr

x pB B Bδ δ δ= +
r r r

xBδ
r

[Park, POP 14, 052110 (2007)]

0 0( )  and  ( ) profiles are preserved (ideal constraints)p qψ ψ
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Ideal constraints give
total resonant fields driving islands

• Ideal constraints (no islands) give shielding current by the jump in the 
tangential field at the rational surface :

• The field suppressed by the shielding current :
• The total resonant field would drive islands without shielding currents :
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IPEC free-boundary solutions have been 
benchmarked in simple limits

• IPEC solutions are verified in a cylinder

– IPEC free boundary equilibria are benchmarked with cylindrical 
force-free solutions (and also with CAS3D in simple limits)

– IPEC and vacuum solutions are very different even in simple limits

Coil (Wall) Boundaryq=2/1 rational surface

External field

Total field

[Park, POP 16, 056115 (2009)]

Perturbed currents

Perturbed currents
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Tokamak responses can be very strong 
by poloidal coupling, amplification or shielding

• Ideally perturbed plasma currents can strongly modify vacuum field in 
tokamaks and give strong plasma responses

n=1 RFA [Lanctot, Reimerdes, Park]

I-coils
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Ideal predictions are validated by plasma response 
measurements when plasma is stable

• IPEC, MARS-F codes and DIII-D plasma response measurements show 
good agreements when plasma is stable

[Lanctot, Reimerdes, Park]

n=1 RFA

[For MARS-F applications, see BI3.00002 by Lanctot ]
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IPEC total resonant fields give 
the drive of magnetic islands and locking

• IPEC total resonant fields are self-consistent in ideal limit and give the 
drive of magnetic islands and locking 

• This is valid before the onset of locking

[Lanctot, Reimerdes, Park]

Total resonant fields are 
suppressed, but become larger 
when plasma has higher 
pressure. Required shielding 
currents also become larger, 
and islands can open if plasma 
can not maintain shielding 
currents
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Total resonant fields explain much better error field 
correction results than vacuum methods

• External resonant field (based on standard vacuum superposition, 
δBP=0) showed often paradoxical results

• IPEC resonant field restored good parametric correlation as expected

EF Correction for LH (2004~2006)
Locking with I-coil phasing (2004) 
EF correction for RH (2008)

[Schaffer, LaHaye, Scoville, Park]

External resonant fields at locking are all 
different although plasma configurations 
are similar
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Non-axisymmetric variation in |B| 
produces non-ambipolar transport

• Action is dependent on toroidal 
location in the presence of the non-
axisymmetric variation in the field 
strength 

• Action must be conserved, so a 
particle must have an additional 
radial non-ambipolar transport 
(Called NTV transport in tokamaks)  

• Important variation occurs by the 
variation in the field strength along 
the perturbed field lines, not along 
unperturbed field lines : Need 
perturbed equilibrium calculations

0L EB B Bδ δ ξ≡ + ⋅∇
r r

0E
ˆB B bδ δ≡ ⋅

r

0
x x

E
ˆB B bδ δ≡ ⋅

r

n=1 EFC 1kA

Lagrangian

Eulerian

Vacuum

Lagrangian

Eulerian Vacuum

[Park, POP 16, 056115 (2009)]
[Boozer, POP 13, 044501 (2009)]
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NTV formula across different regimes 
has been derived with additional approximations

• New NTV formula has been derived with effective Krook collisional 
operators to combine different regimes

– NTV has the form of 

– NTV formula gives the toroidal torque density as

[ ]2
2 2 ( )

( )
eff

rot neo
bounce E B B eff

v
C B

n n vϕτ δ ω ω
ω ω ω× ∇

≅ −
− − +ll

C δB2 Resonance ωrot-ωneo

[Park, PRL 102, 065002 (2009)]
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Combined NTV gives 
right order of magnitudes as observations

• Combined formula gives 10~100 s-1 damping rates as observed in 
relevant parametric spaces of tokamak magnetic braking experiments

• Various predictions can be made :
– NTV can be stronger in lower ν, due to bounce-harmonic resonances
– NTV can be stronger by counter-rotation in lower ν and lower rotations, due to 

resonances between electric and magnetic precessions

Bounce harmonic 
resonances

Resonance 
between precessions
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Combined NTV theory with IPEC field is being 
compared with magnetic braking experiments

• DIII-D magnetic braking experiments have shown resonant behaviors in 
NTV when rotations are low

• SuperBanana Plateau (SBP) theory predicts the resonances
• IPEC field + combined NTV theory also gives good predictions using 

actual fields and all profiles in experiments   

IPEC+Combined NTV

[ J.-K. Park, A. M. Garofalo, W. Solomon][See PI2.00005 by Cole ]
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Non-axisymmetric external perturbations can be 
decomposed by their importance for physics

• A physically important quantity, such as total resonant field, can be 
represented by a matrix coupled to external representation

• SVD analysis gives new decomposition of external field based on its 
importance on the physical quantity

• The first mode is defined the “dominant external field”, since the first 
mode is more important often by an order of magnitude than others  
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Dominant external field is highly robust 
across different tokamak configurations

• Dominant external field is highly robust across various tokamak 
configurations and plasma parameters

1 ( ) ( ) ( ) ( )x x
b bˆV B n A cos n B sin nδ θ φ θ φ→ ⋅ = +
r r

Shape of the dominant external field 
<Cosine part (red) and Sine part (blue)> on the plasma boundary

CMOD
#1060706017.01040

[Park, NF 48 045006 (2008)]
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Error field effects can be understood 
based on overlap with the dominant external field

• Given error field can be decomposed

• If the dominant external field is almost only important distribution, 

• Then the total resonant field is

• Overlap field is defined as

• Overlap field is the external representation of the total resonant field

( )1 1Φ Φxerr xerr x x
b b b bV V= ⋅ +
r r r r

L

( )1 2 0x
i bis s , C V i>> ⋅ ≥ ≅
t r

( )( ) ( )1 1 1 1Φ Φx xerr x xerr x
r b b b b bC V V s VΒ = ⋅ ⋅ = ⋅

t r r r r rr

( )1Φx xerr x
o b bB Vδ ≡ ⋅

r r
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Scaling for locking drive becomes 
more reliable with overlap field

• Tokamak locking scaling based on overlap field  :

( ) ( ) ( )1 5 1 9 1 24 19 3 1 11
0 0

0

0 4 10 [10 ] [ ] [ ]
x . . . .oc

T N
T

B . n m B T R m
B
δ β−− − −≤ ×

[For TBM cases, see BI3.00001 by Schaffer, and also see XO4.00003 on Friday ]
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ITER error field correction coil capability 
has been revisited with new methods

• Potentially ITER may have 3x6 
Error Field Correction Coils 
(EFCC) and 3x9 Resonant 
Magnetic Perturbation Coils 
(RMPC)

• EFCC (or RMPC) must have 
capability to compensate error 
fields due to primary magnet 
(CS/PF/TF) coil distortions

• Coil capability has been 
revisited in order to include 
ideal plasma response effects

EFCT

EFCB

EFCM

RMPU
RMPM
RMPL
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Worst error fields and required corrections were 
estimated based on overlap field

• Overlap field of each component shows 
– Worst error fields come from PF3~4 tilt
– Correction capability of each correction : RMPU,M,L > EFCM >> EFCT,B

29

Required currents to eliminate the worst overlap fields
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One conclusion : EFCT and EFCB coils are very 
inefficient for resonant field correction

• EFCT and EFCB coils are less efficient than EFCM 
by an order of magnitude for the resonant fields

• Are EFCT and EFCB coils still useful in terms of 
other physics?

• Even if so, can RMP coils do much better?

• Now we like to compare (EFCM+EFCT+EFCB) and 
(EFCM+RMPU+RMPL) with (EFCM only) 

30
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Other physics? : NTV is the best known physics 
element for non-resonant fields

• Neoclassical Toroidal Viscosity (NTV) causes plasma rotation damping 
and destabilizes various MHD

• NTV estimation presently requires perturbed equilibrium calculations for 
the Lagrangian variation in the field strength with various bounce 
harmonic integrations

• That is, NTV is not easy to optimize
• So, we use overlap approximation : Correction should simultaneously 

– Remove the overlap field (remove the resonant components)
– Maximize the overlap (minimize the non-resonant components)

31

[ ]2
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Φ Φ
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≡
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Corrections were optimized based on overlap

• EFCT (RMPU) and EFCB (RMPL) amplitudes and phases (relatively to 
a fixed EFCM amplitude and phase) were optimized to maximize overlap

32

(EFCM+EFCT+EFCB) (EFCM+RMPU+RMPL)
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Optimized corrections give the best capability for 
both resonant and non-resonant components 

• EFCM gives NTV reduction by 1~2 orders of magnitude
– This indicates reduction of resonant components is also very important for NTV

• Further NTV reduction by a factor of 1~3 is possible by optimization
• However, required currents are EFCM+EFCT+EFCB (95+164+257kAt) 

>> EFCM only (132kAt) > EFCM+RMPU+RMPL (71+23+23kAt)

33

Scen2_Burn Scen4_Burn
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High-β plasmas require perturbed equilibrium 
calculations consistently with non-ideal forces

• Locking and NTV give a toroidal torque, which is not included in IPEC, 
and so IPEC is not consistent when the torque is large

• Importance of the torque (non-ideal force) can be estimated as

  and  
2V V

TWs
W W

φδ α
δ δ

≡ − ≡ −

( )0 0 0 0 0  where p j B p j B j B f fδ δ δ δ δ Π∇ = × − ∇ − × − × + =∇ ⋅ +
r rr r r r r r tr r r

L

In high beta plasmas,
The torque becomes too large, 

indicating the importance of the 
currents associated with the 

torque in perturbed equilibria :
Importance of tensor pressure 

perturbed  equilibria

[Park , POP 16, 082512 (2009)]
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Summary and Future Work

• IPEC solves free-boundary ideal perturbed equilibria

• IPEC applications showed that plasma response to non-axisymmetric 
fields are important in tokamaks

– Vacuum superposition approximation is generally not valid 

• Combined NTV with ideal perturbed equilibria give reasonable 
explanations and predictions for non-ambipolar transport in tokamaks

• Dominant external field and overlap give useful tools to understand 
control of non-axisymmetric magnetic perturbations

– Revision of ITER error field study has shown (EFCM+RMPU+RMPL) is the 
best configuration for both resonant and non-resonant components

• Perturbed equilibria should include torques to be more self-consistent
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