

Supported by

The continuous improvement of H-mode discharge and pedestal performance with progressively increasing lithium coatings in NSTX

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U I ANI LLNL Lodestar MIT **Nova Photonics** New York U ORNI PPPL Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCI A UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

R. Maingi

S.M. Kaye, D.P. Boyle, J.M. Canik, J.P. Allain, C.H. Skinner, M.G. Bell, R.E. Bell, T.K. Gray, M. Jaworski, R. Kaita, H.W. Kugel, B.P. LeBlanc, D.K. Mansfield, T.H. Osborne, S.A. Sabbagh, V.A. Soukhanovskii

53rd Annual Meeting of the Division of Plasma Physics Salt Lake City, UT, Nov. 14-18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI KAIST** POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP, Jülich IPP. Garching ASCR, Czech Rep

Office of

Science

Type I ELMs eliminated, energy confinement improved with lithium wall coatings; (ELMs eliminated up to β_N limit)

Plasma characteristics change (mostly improve) nearly continuously with increasing lithium evaporation

- ELM frequency first declines, and then goes to 0
 - n_e , P_e and P_{tot} profile widths increase with lithium D. Boyle, PPCF 2011
 - Edge profile and stability analysis in <u>D. Boyle, B04.05</u>
- Global characteristics change
 - Recycling: D_{α} declines in lower divertor, center stack, upper div.
 - Li-I light from lower divertor increases
 - Edge neutral pressure decreases
 - Line average density at t=0.4 sec decreases
 - Confinement improves: Peak W_{MHD} , β_N increase at constant P_{NBI}
 - $-T_e$ and P_e profiles broaden; n_e profile peaks then broadens
- Edge transport declines
- * Experiments conducted before LLD installation

J. Canik, PoP 2011

R. Maingi, PRL 2011

Lithium introduced methodically during experiment - first lithium in 2008 run campaign

NSTX

ELMs disappeared gradually during experiment

APS 2011 – Maingi, B04.04

D_{α} decreases and lower divertor Li-I increases with increasing lithium evaporation

Global plasma performance improves nearly continuously with increasing lithium

APS 2011 - Maingi, B04.04

NSTX

CAK RIDGE

- Line-average density from Thomson n_e^{TS} evaluated at t=0.4 sec (fixed time)
- $W_{MHD} \beta_N$, and H97L (global τ_E , not thermal) evaluated at time of peak W_{MHD}

Both global and electron confinement, τ_E and τ_{Ee} , increase with pre-discharge lithium evaporation

Edge χ_e decreases with increasing lithium

Pre-Discharge Li Deposition (mg)

Edge χ_i increases with increasing lithium

Pre-Discharge Li Deposition (mg)

Edge χ_{e} goes down and χ_{i} goes up; core χ 's unchanged

- Global increase in τ_E correlates with drop in edge χ_e
- Consistent with change in χ_e , D from SOLPS simulations

As lithium evaporation increases, transport barrier widens, pedestal-top χ_e reduced

Summary and Discussion

- Global characteristics change and edge electron transport declines with increasing deposition, *(ELMs suppressed)*
- Result surprising because of the nominal film thicknesses
 - Near strike point average lithium deposition in this experiment ranged from 60 nm - 500 nm
 - Simple calc. for NSTX divertor parameters shows ion implantation depth < 10 nm, i.e. << 60 nm – 500 nm
- Possible reasons for this dependence under investigation
 - Continual erosion of films near strike point
 - Slow evolution of films far from outer strike point (center stack)
 - Importance of oxygen in Li-C system for pumping D (<u>Allain, PI2.06;</u> <u>Taylor, B04.12</u>, Nucl. Fusion submitted; Krstic, FED at press)

Backup

T_e and P_e profile peaking factors decrease with increasing lithium

- n_e profile peaking factor first increases as ELM v goes down, and then decreases as ELMs disappear and profile becomes hollow
- T_e and P_e profile peaking factors decrease ~ continuously, good for MHD stability

Edge stability limits pushed beyond global stability limits with lithium coatings in NSTX

LiTER deposition has toroidal and poloidal variation

- 30cm distance from LiTER to surface
- in NSTX, x-axis should be multiplied by 10x
- For R_{OSP}~0.8m, deposition 1/3 less than max.

Divertor recycling and far edge cross-field transport quantified with data-constrained SOLPS modeling

- SOLPS (B2-EIRENE: 2D fluid plasma + MC neutrals) used to model NSTX experimental data
 - Iterative Method
 - ✓ Neutrals, impurities contributions
 - ✓ Recycling changes due to lithium

Parameters adjusted to fit data	Measurements used to constrain code
Radial transport coefficients D_{\perp} , χ_e , χ_i	Midplane n _e , T _e , T _i profiles
Divertor recycling coefficient	Calibrated D_{α} camera
Separatrix position/T _e ^{sep}	Peak divertor heat flux

Carbon is the dominant impurity species with lithium coatings

- Measured lithium concentration is much less than carbon
 - Carbon concentration ~100 times higher
 - Carbon increases when lithium coatings are applied
 - Neoclassical effect: higher
 Z accumulates, low Z
 screened out
- Increase in n_c may be due to lack of ELMs
 - Can be mitigated by triggering ELMs

