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NSTX is Addressing Global Stability Needs for Maintaining 

Low li, High Beta Plasmas for Fusion Applications 

 Motivation 

 Maintain high bN stability, validate 

predictive and control capability to allow 

confident extrapolation to ST fusion 

applications and ITER 

 Outline 

 Resistive wall mode stabilization at low internal 

inductance, li 

 Analysis of RWM passive stability at low li 

 RWM active control advances to improve stabilization 

 Model-based RWM state space controller use 

Fusion Nuclear 
Science Facility 

(FNSF) ST Pilot 
Plant 

ITER 
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RWM active stabilization coils 

RWM poloidal 

sensors (Bp) 

RWM radial sensors (Br) 

Stabilizer 

plates 

 High beta, low aspect ratio 

 R = 0.86 m, A > 1.27 

 Ip < 1.5 MA, Bt = 5.5 kG 

  bt < 40%, bN > 7 

 

 Copper stabilizer plates for kink 

mode stabilization 

 

 Midplane control coils 

 n = 1 – 3 field correction, 

magnetic braking of wf by NTV 

 n = 1 RWM control 

 

 Combined sensor sets now used 

for RWM feedback 

 48 upper/lower Bp, Br 

NSTX is a spherical torus equipped to study passive and 

active global MHD control 

3D Structure Model 

3 
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Improvements in stability control techniques significantly 

reduce unstable RWMs at low li and high bN 

bN 

 Initial experiments 

 48% disruption 
probability by RWM  

 

 Experiments with 
control enhancements 

 Significantly reduced 
disruption probability 
with control 
enhancements 

• 14% of cases with 

bN/li > 11 

li 

BetaN vs.li - Gridlines

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8
li

b
e

ta
N

bN/li 13 12 11 10 

n = 1 no-wall beta limit line

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8
li

b
e
ta

N

14 

bN/li = 6.7 

Unstable RWM 

Stable / controlled RWM 

BetaN vs.li - XP948

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8
li

b
e
ta

N

ST Component 

Test Facility 

ST Pilot Plant 

Plasma internal inductance (li): 

 Integral measure of the peakedness of the current profile 

 Low li typical of non-inductive operation, and at high k (for vertical stability) 

Control: active     passive 
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≈ 

Improvements in stability control techniques significantly 

reduce unstable RWMs at low li and high bN 

bN 

li 
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 Computed n = 1 no-wall limit bN/li,~ 6.7 (low li range 0.4 – 0.6) 

 Synthetic equilibria variation: n = 1 no-wall unstable at all bN 
at li < 0.38 (current-driven kink limit) 

 significant for NSTX-U, next-step ST operation 

n = 1 no-wall limit 

RWM State Space 

Controller Utilized 

 Initial experiments 

 48% disruption 
probability by RWM  

 

 Experiments with 
control enhancements 

 Significantly reduced 
disruption probability 
with control 
enhancements 

• 14% of cases with 

bN/li > 11 

• Much higher 

probability of 

unstable RWMs at 

lower bN, why?? 
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≈ 

Improvements in stability control techniques significantly 

reduce unstable RWMs at low li and high bN 

bN 

li 
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 Computed n = 1 no-wall limit bN/li,~ 6.7 (low li range 0.4 – 0.6) 

 Synthetic equilibria variation: n = 1 no-wall unstable at all bN 
at li < 0.38 (current-driven kink limit) 

 significant for NSTX-U, next-step ST operation 

n = 1 no-wall limit 

 Initial experiments 

 48% disruption 
probability by RWM  

 

 Experiments with 
control enhancements 

 Significantly reduced 
disruption probability 
with control 
enhancements 

• 14% of cases with 

bN/li > 11 

• Much higher 

probability of 

unstable RWMs at 

lower bN, why?? 

Examine RWM 

stability 

here 
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Kinetic stability calculations show reduced stability in low li 

target plasma as ωφ is reduced, RWM becomes unstable 

 Stability evolves 

 Computation shows stability at 

time of minimum li 

 Region of reduced stability vs. 

ωφ found before RWM 

becomes unstable (li = 0.49) 

 Quantitative agreement 

between theory/experiment 

 MISK, MARS-K, HAGIS codes 

being benchmarked (ITPA) 

 MISK calculation of ωD 

improved 

• Agreement between 

theory/experiment improved 

• Best agreement with fast 

particle effects included 

 

 
 

140132, t = 0.704s 

unstable 

marginal 

stability 

(experiment) 

RWM stability vs. wf (contours of gtw) 

2.0 

1.0 

wf/wf
exp 

thermal 

w/fast particles 

- J.W. Berkery, et al., PRL 104 (2010) 035003 

- S.A. Sabbagh, et al., NF 50 (2010) 025020 

- J.W. Berkery, et al., Phys. Plasmas 17, 082504 (2010) 

- S.A. Sabbagh, et al., IAEA FEC 2010, Paper EXS/5-5 

MISK code 

(more quantitative comparison to theory) 
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Reduced collisionality (n) is stabilizing for resistive wall 
modes, but only near kinetic resonances 

140132 @ 0.704 

J.W. Berkery et al., PRL 106, 075004 (2011) 

Marginal 

Stability 

 NSTX-tested kinetic RWM stability theory: 2 competing effects at lower n 

 Stabilizing collisional dissipation reduced (expected from early theory) 

 Stabilizing resonant kinetic effects enhanced (contrasts early RWM theory) 

 Expectations in NSTX-U, tokamaks at lower n (e.g. ITER) 

 Stronger stabilization near wf resonances; almost no effect off-resonance  

 Plasma stability gradient vs. rotation increases 

• important to avoid unfavorable rotation, suppress transient RWM with active control 

R
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unstable 
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b
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 See J.M. Bialek et al., poster PP9.47 (Wednesday, PM) 
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Active Control: combined RWM Br + Bp sensor feedback gain 

and phase scans produce significantly reduced n = 1 field 

 Favorable Bp + Br feedback (FB) 
settings found (low li plasmas) 

 Fast RWM growth ~ 2 - 3 ms 
control by Bp 

 Br feedback controls slower (~10 
ms) n=1 field amplification, modes 

 Time-evolved theory simulation of 
Br+Bp feedback follows experiment 
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RWM feedback using upper/lower Bp and Br sensors modeled 

and compared to experiment 

 Both Br, Bp feedback contribute to active control 

 Br mode structure and optimal feedback phase 

agrees with parameters used in experiment 

 Br feedback alone provides stabilization for growth 

times down to ~ 10 ms with optimal gain 

 Theory shows optimal feedback phase used in 

experiments; gain used is near optimal 
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 Controller models, can 

compensate for wall currents 

 Including mode-induced 

current 

 Potential to allow more flexible 

control coil positioning 

 May allow control coils to be 

moved further from plasma, 

and be shielded (e.g. for ITER) 

 

 Straightforward inclusion of 

multiple modes (n > 1) in 

feedback 

11 

Model-based RWM state space controller including 3D 

model of plasma and wall currents used at high bN 

Balancing 

transformation 

~3000+ 

states 
Full 3-D model 

… 

RWM 

eigenfunction

(2 phases,    

2 states) 
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 Improved agreement with sufficient 

number of states (wall detail) 

12 

Open-loop comparisons between sensor measurements and 

state space controller show importance of states and model 

A) Effect of Number of States Used 
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RWM state space controller sustains otherwise disrupted 

plasma caused by DC n = 1 applied field 

 n = 1 DC applied field 

test 

 Generate resonant 

field amplication, 

disruption 

 Use of RWM state 

space controller 

sustains discharge 

 

 RWM state space 

controller sustains 

discharge at high bN 

 Best feedback 

phase produced 

long pulse, bN = 

6.4, bN/li = 13 
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NSTX is Addressing Global Stability Needs Furthering Steady 

Operation of High Performance ST / Tokamak Plasmas 

 Significant reduction in disruption probability in high bN 

plasmas with reduced li 

 Quantitative agreement between RWM marginal stability and 

kinetic stabilization theory for low li, high bN plasmas 

 Use of combined Br + Bp RWM sensor n= 1 feedback 

improves reduction of n = 1 field amplitude, improved stability 

 RWM state space controller sustains low li, high bN plasma 

 Potential for greater flexibility of RWM control coil placement and 

shielding in future burning plasma devices (e.g. FNSF, ITER) 
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Supporting Slides 
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Operation has aimed to produce sustained low li and 

high pulse-averaged bN 

 Plasmas have begun to reach low li and high <bN>pulse suitable for next-

step ST fusion devices 

 Some parameters (e.g. elongation > 3) still need to be reached self-

consistently 
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NSTX RWM state space controller sustains high bN, low li 

plasma 

RWM state space feedback (12 states) 

 Feedback phase 

scan 

 Best feedback 

phase 

produced long 

pulse, bN = 6.4, 

bN/li = 13 
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Second NBI beam port in NSTX-U makes a small difference in 

with-wall limit 

18 

VALEN computed RWM growth rate vs. bN 


