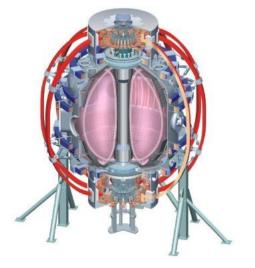


Supported by



#### Office of **ENERGY** Science


### L-H power threshold scaling with magnetic geometry on NSTX and the role of ion orbit loss

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin** 

#### **Devon J. Battaglia**

C.S. Chang, S.M. Kaye, S.Ku, R.Maingi, and the NSTX Research Team

> 53<sup>rd</sup> APS DPP Meeting Salt Lake City, UT November 16, 2011





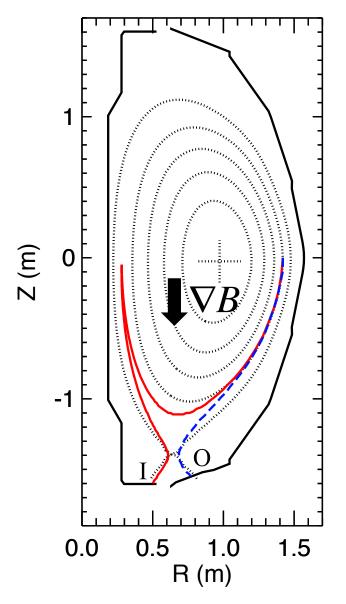
Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

### Outline

- X-transport: suppression of neoclassical ion orbit loss is a constraint on the edge E<sub>r</sub>
  - Constraint on E<sub>r</sub> scales with T<sub>i</sub> and magnetic geometry, especially R<sub>X</sub>
  - E<sub>r</sub> × B shear predicted to play a role in L-H transition
- NSTX results: lend strong support for the X-transport theory
  - Critical edge  $T_i$ , and thus  $P_{LH}$ , increase as  $R_X$  moves inward
    - Increase in T<sub>i</sub> nearly matches increase in calculated critical ion loss energy
  - Critical T<sub>i</sub> mostly independent on divertor pumping and CS fueling
    - But large variation in P<sub>LH</sub> → these things impact coupling between core heating and edge T<sub>i</sub>
- X-transport should be included in L-H transition models
  - "Hidden variables" of L-H transition qualitatively consistent with Xtransport physics



• Steady-state E<sub>r</sub> maintains ambipolar transport


$$\varepsilon \frac{\partial}{\partial t} E_r = e \Big[ \Gamma_e \Big( E_r \Big) - \Gamma_i \Big( E_r \Big) \Big] = 0$$

- Self-consistent E<sub>r</sub> calculation must consider all nonambipolar transport processes
  - X-transport: significant non-ambipolar process near plasma edge
- Edge  $E_r \times B$  shear thought to play a role in L-H transition
  - Transport suppression mechanism still under investigation
    - Possible: decorrelation of turbulent eddies by  $E_r \times B$  flow shear <sup>[1]</sup>
    - Possible: interaction of mean and turbulent driven  $E_r \times B$  flow shear<sup>[2]</sup>
  - May be a critical  $E_r \times B$  shear for triggering L-H transition
    - $E_r \times B$  shear ~ minimum in  $E_r$  well

[1] K.H. Burrell, Phys. Plasmas, 4 (1997) 1499-5185
[2] G.D. Conway, et. al. Phys. Rev. Lett. 106 (2011) 065001

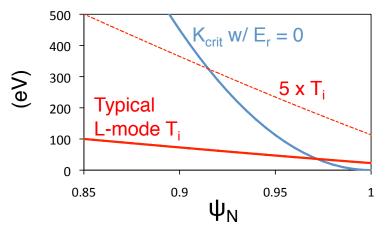


#### X-transport: suppression of non-ambipolar transport of ions on neoclassical orbits constrains the edge E<sub>r</sub>



- X-point amplifies grad-B drift
  - X-point: low  $B_{\theta}$ , slows poloidal transit
  - Non-ambipolar: ion drift >> electron drift
- Lowest energy loss orbits:
  - Start at outboard midplane
  - Bounce at inboard midplane
  - Lost to inner divertor leg in favorable grad-B
- Negative E<sub>r</sub> acts to confine ions
  - Constraint on E<sub>r</sub>: must be negative enough to nearly suppress non-ambipolar ion loss

C.S. Chang, S. Ku, H. Weitzner, *Phys. Plasmas*, **9** (2002)


# lon velocity loss hole has a critical energy near ion thermal energy in edge region when $E_r = 0$

- Single particle guiding-center orbit tracing with E<sub>r</sub> = 0, no collisions
  - White: Confined orbits
    - T: Trapped, P: Passing
  - Gray: Unconfined orbit
    - I: Strike inner div
    - O: Strike outer div
- K<sub>crit</sub> within Maxwellian T<sub>i</sub> in edge
  - X-transport important only in edge pedestal region
  - Negative E<sub>r</sub> pushes K<sub>crit</sub> curve to higher energies

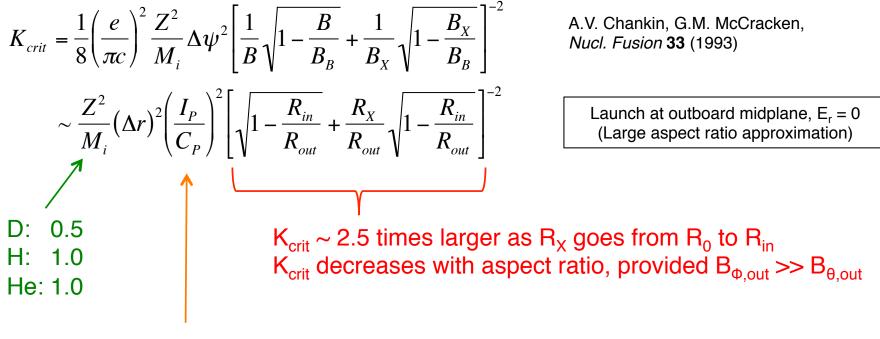
Guiding-center orbit tracing code:

S. Ku, H. Baek, C. S. Chang, Phys. Plasmas 11 (2004)

-0.6 -0.7Pitch -0.8 -0.9 -1 100 200 300 400 500 0 Single ion energy (eV) Critical ion energy for loss:  $K_{crit} = 71 eV$ 



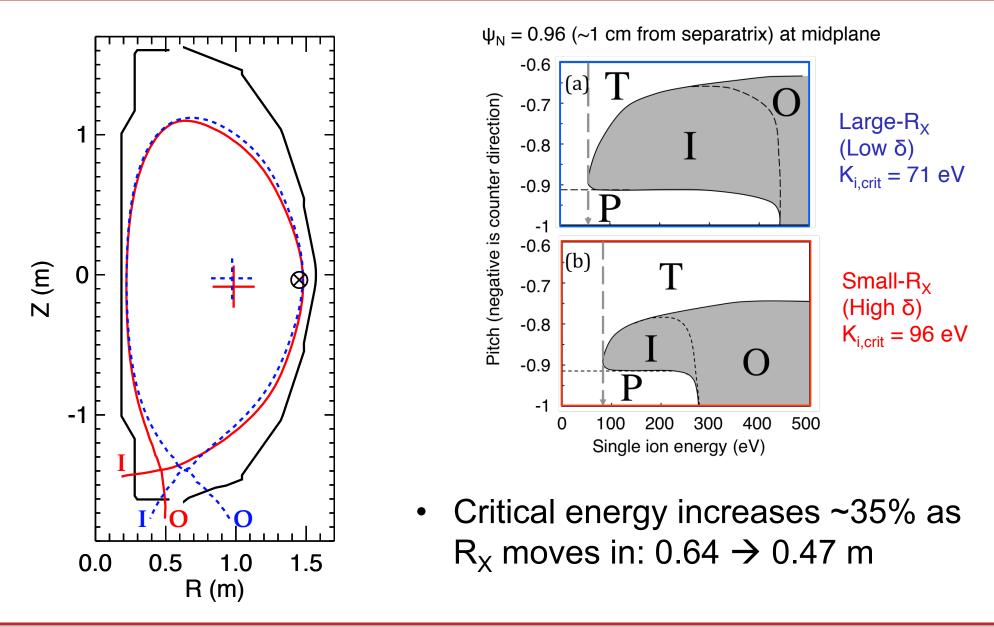
 $\psi_{\text{N}}$  = 0.96 (~1 cm from separatrix) at midplane


🔘 NSTX

#### Analytical model for ion orbit loss with E<sub>r</sub> = 0 illustrates impact of plasma parameters on K<sub>crit</sub>

•  $K_{crit}$ : Critical energy for collisionless ion loss with  $E_r = 0$ 

- B,  $B_X$ ,  $B_B$ : Magnetic field at launch point, bounce point & X-point


 $-\Delta \psi = \psi_X - \psi_{launch}$ ,  $\Delta r = R_{out} - R_{launch}$  on midplane



 $K_{crit}$  increases with larger  $I_p$  and smaller plasma circumference ( $C_p$ )



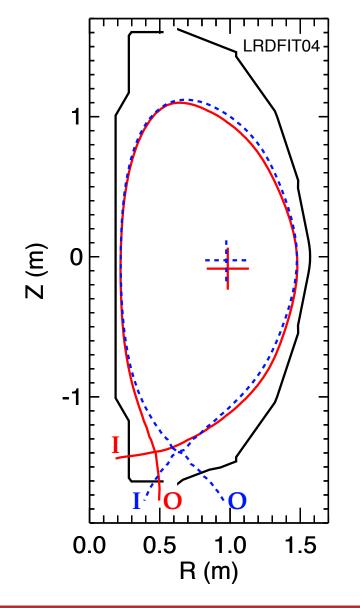
#### **Critical energy for ion loss increases as R<sub>x</sub> decreases**



#### **Full self-consistent E<sub>r</sub> solution must consider collisions**

- Low collisionallity regime (ion loss time \*  $v_{ii} \ll 1$ )
  - Ions scattered into loss hole are lost on collisionless orbits
  - Increase collisionallity: more ions scattered into loss hole  $\rightarrow$  more negative  $\rm E_{r}$
- High collisionallity regime
  - Ions scattered into loss hole to not complete collisionless orbit
  - Increase collisionallity: fewer collisionless ion loss orbits  $\rightarrow$  more positive  $\rm E_{\rm r}$
- Ion loss time impacts edge E<sub>r</sub>
  - Grad-B drift direction: longer ion loss orbit time in unfavorable
  - X-point region: large null region (snowflake) increases ion loss time



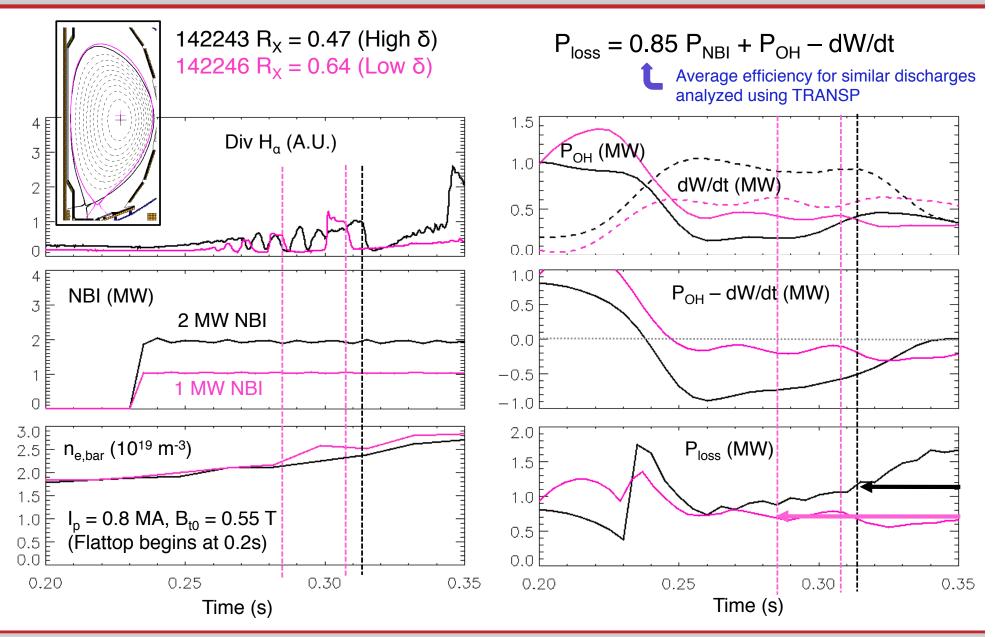

#### **Connection between X-transport theory and L-H transition**

- Ion loss hole makes a significant contribution to E<sub>r</sub> at edge
   Contribution scales with T<sub>i</sub> (Neoclassical scales with grad-T<sub>i</sub>)
- For a given  $T_i$ , if  $K_{crit}$  is lowered,  $E_r$  becomes more negative
- More negative E<sub>r</sub> leads to a deeper E<sub>r</sub> well

   Larger dE<sub>r</sub>/dr → increased shearing rate
- If L-H transition at critical dE<sub>r</sub>/dr, then transition at critical T<sub>i</sub>
  - Critical T<sub>i</sub> depends on plasma geometry and collisionality
  - Expect edge  $T_i$  and heating power to be connected  $\rightarrow P_{th}$



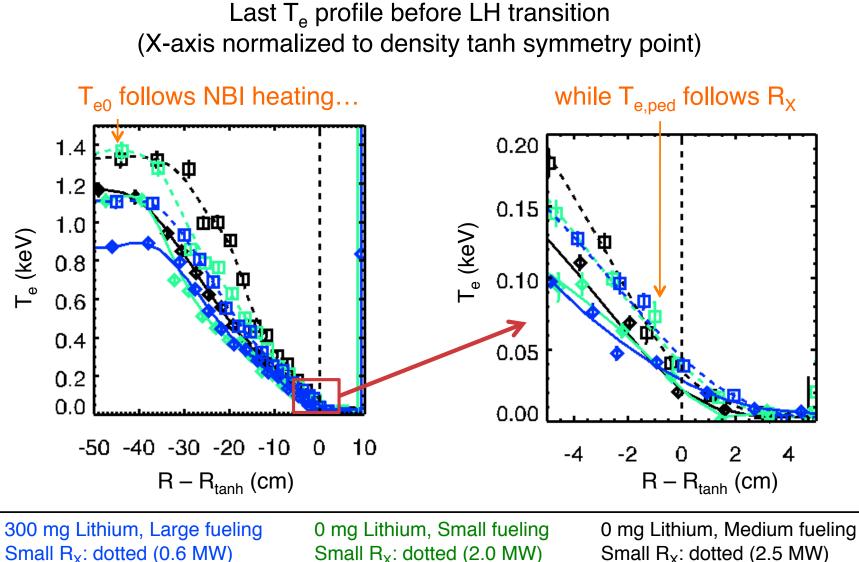
#### X-transport predictions motivated a dedicated P<sub>LH</sub> versus R<sub>X</sub> experiment on NSTX




- Goal: quantify  $P_{LH}$  vs  $R_X$  on NSTX
  - Match R<sub>IN</sub>, R<sub>OUT</sub>
  - Nearly match X-point height, surface area, B<sub>T0</sub>, B<sub>OUT</sub>, density
  - Reproduce shapes under different pumping & fueling conditions
  - Shot-to-shot change in NBI < 300 kW</p>
- Delay L-H to > 40 ms after NBI turnon to reduce error in P<sub>LH</sub>

 $- P_{OH} - dW/dt$  slowly varying

First results reported in: R. Maingi, et. al. Nucl. Fusion 50 (2010)


#### LH transitions occur when P<sub>OH</sub> – dW/dt is slowly varying



**W**NSTX

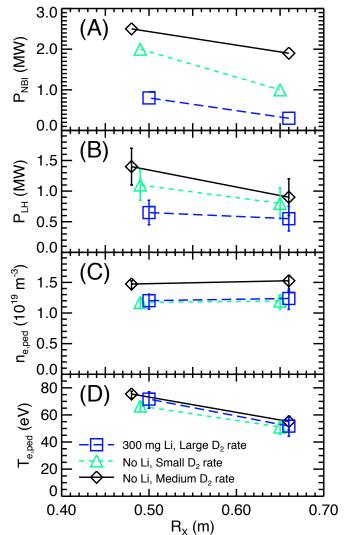
53rd APS DPP Meeting – LH transition and X-transport on NSTX, D.J. Battaglia (11/16/2011)

## Slowly varying profiles provide good constraint to L-mode electron profiles right before L-H transition



Small  $R_X$ : dotted (0.6 MW) Large  $R_X$ : solid (0.3 MW)

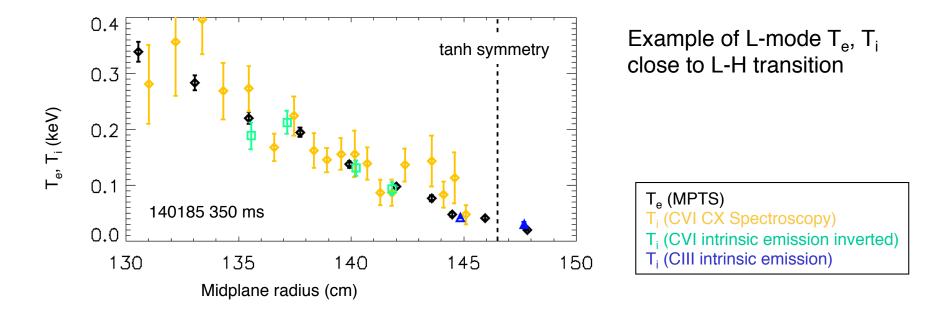
53<sup>rd</sup> APS DPP Meeting – LH transition and X-transport on NSTX, D.J. Battaglia (11/16/2011)


Large  $R_x$ : solid (1.0 MW)

Large R<sub>x</sub>: solid (2.0 MW)

**(()** NSTX

# Edge temperature prior to LH transition larger for small- $R_X$ than large- $R_X$ over wide range of heating and pumping


- Three pumping & fueling conditions
  - Divertor pumping on NSTX varied using inter-shot Lithium deposition rates
- P<sub>LH</sub> increases with...
  - Less divertor pumping
  - Higher  $n_{e,ped}$  and/or HFS fueling rate
  - Smaller R<sub>X</sub>
- Pedestal T<sub>e</sub> near L-H time ...
  - Nearly independent of pumping, fueling density, NBI power
  - Increases ~40% as  $\rm R_{\rm X}$  0.64  $\rightarrow$  0.37 m
  - Unfortunately, T<sub>i</sub> not available for all shots



D.J. Battaglia, et. al., PRL, submitted

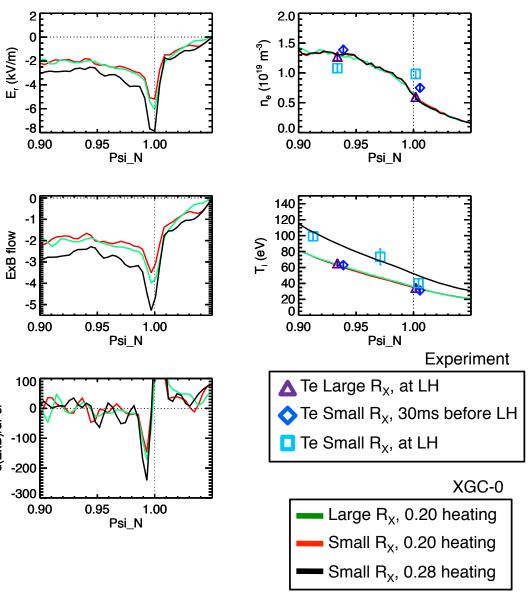
#### T<sub>e</sub> can be used as a proxy for T<sub>i</sub> in the L-mode edge of NSTX

- Infer  $T_i \sim T_e$  in L-mode edge
  - Thermal equilibration time < electron thermal confinement</li>
  - T<sub>i</sub> is the critical parameter in X-transport theory
- Thus, T<sub>i,LH</sub> increases ~40% as R<sub>X</sub>: 0.64  $\rightarrow$  0 .47 – Leads to 20 – 60% larger P<sub>LH</sub>





#### **Experimental data is consistent with X-transport model**


- Increase in T<sub>i</sub> matches increase in K<sub>0</sub>
  - − As  $R_X$ : 0.64 → 0.47 m ...
    - K<sub>0</sub> increases 35% (guiding center calculation)
    - Edge T<sub>i</sub> increases 40% (derived from measurements)
  - Full self-consistent E<sub>r</sub> calculations needed to confirm quantitative agreement
- $P_{LH}$  dependence on pumping and fueling
  - $-T_i$  similar for all three conditions ... but P<sub>LH</sub> varies considerably
  - Recycling cools edge  $\rightarrow$  need larger core heating to reach critical T<sub>i</sub>
- Does change in strike points with  $R_X$  impact div. recycling?
  - Most likely and it will have an effect on  $\mathsf{P}_{\mathsf{LH}}$
  - But it should not effect  $T_{i,LH}$  (since it appears insensitive to large changes in divertor recycling)

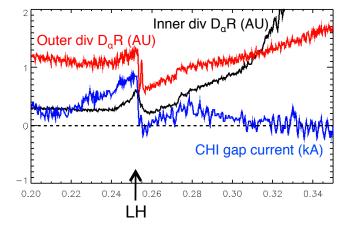


#### **Preliminary self-consistent calculations of E<sub>r</sub> using XGC-0**

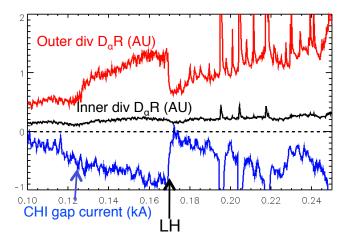
- XGC-0 simulations
  - 5D ion & electron + neutrals kinetic model
  - Divertor sheath and recycling models
- Tailor model parameters to match L-mode profiles
  - Inboard heating, outboard neutral fueling, anomalous transport rate
- E<sub>r</sub> well deeper for large-R<sub>X</sub> shape with matched profiles

Preliminary results. No electron physics included.






d(ExB)/dPsi


## Measurements may suggest there is finite ion orbit loss to the divertor

- NSTX:  $D_{\alpha}$  increases prior to L-H
  - Favorable: biggest change in inboard div
  - Unfavorable: biggest change in outboard div
- NSTX: Divertor current prior to L-H
   Direction of current follows grad-B direction
- Are ions lost on neoclassical orbits?
  - Signals consistent with ions lost on neoclassical orbits to the divertor
  - Large ion loss not expected in steady state, but may be possible in a dynamic solution
- Use XGC-0 to explore L-H dynamics and impact on SOL / divertor









#### **Acknowledgements**

*This work was funded by the US Department of Energy under Contract Numbers DE-AC02-09CH11466 and DE-AC05-00OR22725.* 

**Reprints** 

