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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

TAEs and avalanches 

•  Toroidal Alfvén eigenmodes (TAEs) are weakly damped 
Alfvén waves in a toroidal plasma, often driven by ions 
whose velocity approaches the Alfvén velocity (or a fraction  
thereof) 

•  A TAE is characterized by a toroidal mode number, n, and 
may occur steadily or intermittently 

•  A burst in which several TAEs of differing n occur is termed 
an avalanche 

•  Avalanches produce drops in the neutron rate and losses 
of beam ions are sometimes observed concurrent with an 
avalanche 
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Typical avalanche in NSTX shows multiple n on Mirnovs 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Avalanches can cause drop in neutron rate and sometimes 
burst of loss 

•  But, loss is not 
observed with 
every avalanche 

•  Pitch angle 
distributions of loss 
during avalanches 
sometimes differ 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Any avalanche induced beam ion loss is measured with 
scintillator probe 
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Beam ion 
orbit

Scintillator probe: 
Combination of aperture 
geometry & B acts as magnetic 
spectrometer 
Fast video camera captures 
luminosity pattern on scintillator 
as function of time 
Γloss(ρ, χ, t)

NSTX probe: 
5 cm ≤ ρ ≤60 cm 
15° ≤ χ ≤ 80° 



APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Avalanche induced loss often occurs over a wide range of 
pitch angles 

•  Interpreted as 
beam ion phase 
space being 
stochastized by 
multiple modes 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Goal: compare measured and modeled lost ion pitch angle 
distributions  

•  Measured distribution recorded by scintillator probe 
•  Loss distribution modeled by guiding center orbit code that 

incorporates:  
–  Measured TAE n numbers, frequencies (Mirnov coils) 
–  Radial mode structures and amplitudes (multichannel 

microwave reflectometer data coupled to NOVA-K calculations 
of eigenmodes) 

–  Deposited beam ion distribution function from TRANSP 
–  Focus on recently deposited beam ions since losses appear at 

or very close to injection energy of 90 keV 
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Compare cases with and without losses to draw inferences 
about conditions when fast ions may be lost 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Example avalanche with no loss observed 

•  n=2–5 present, but no 
loss evident on 
scintillator probe 

•  Neutron rate drops 
17% 

•  Single beam injecting 
at 90 kV 
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Case of no observed losses 

•  n=2–5 concurrently present in 
3 rapid bursts 

•  Neutron rate drops by 17%, 
yet no lost beam ions seen by 
detector 

•  Could there be loss, but not to 
detector position? 
–  Possible, but see below 

•  Internal redistribution only? 
–  Might occur if modes are more 

core-localized with small edge 
amplitudes, but ρNB large in 
NSTX 

–  Orbit simulations suggest 
redistribution does occur 
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Avalanche with loss also has multiple n, and loss evolves 
rapidly during event 

•  blah 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

60° pitch angle loss appears first, then range of lower pitch 
angles 

•  Rapid appearance of wide pitch angle spot (18°–40°) in    
33 µs (≤10 toroidal transits) indicates transport of fast ions 
is very strong during avalanche 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Beam ion orbits can be completely characterized by 3 
constants of the motion 

•  E = ½ mv2 (kinetic energy) 
–  Conserved on time scales short compared to collisional slowing down 

time; also roughly conserved in avalanche losses as these ions lost at 
injection energy 

•  µ = ½ mvperp
2/B (magnetic moment) 

–  Conserved in the absence of fields varying near the particle’s cyclotron 
frequency or field gradients shorter than length ρi 

•  Pφ =mvφR+qψpol (canonical angular momentum) (a.k.a. Pζ) 
–  Conserved in axisymmetry (i.e. in absence of nonaxisymmetric MHD or 

error field correction coil fields) 

•  Conservation conditions usually satisfied in NSTX 
•  Knowledge of these 3 parameters fully determines orbit 

(except toroidal position, φ, and gyromotion, which are not 
used in this work) 

•  This approach equivalent to guiding center orbit following 
13 



APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Deposited full energy beam distribution can be represented 
in (µ, Pφ) space, along with certain phase space boundaries 

•  blah 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Phase space model also helps understand MHD loss 

•  Observed MHD frequencies <<Ωci, so µ will be conserved 
•  Mode destroys toroidal symmetry, so Pφ no longer constant 
•  A single n mode moves particles along a line nE-ωPφ=const 

in diffusive fashion, at fixed µ 
•  Multiple n in avalanche can cause broader transport 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

NOVA-K TAE radial eigenfunctions can be fit  to reflectometer 
fluctuation profiles of principal modes 

•  Displace-
ment can 
be 
matched, 
giving 
absolute 
amplitudes 
of various 
n modes 
for input 
into orbit 
following 
code 

16 



APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

In this avalanche, n=2 has largest amplitude 

•  n=2 also has the largest amplitude near edge, likely 
contributing to NBI loss 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Mode structures and amplitudes can be used to determine 
regions of phase space subject to stochasticity 

•  Use guiding center code ORBIT to follow nearby pairs of 
ions for a number of toroidal transits 

•  If vector between particles in action/angle space rotates by 
more than π, then that region of phase space is stochastic 

•  Repeat process for many particle pairs, spanning phase 
space, and shade volumes of phase space in plot to 
designate stochastic domains 

•  Since losses are near injection energy, overlay full energy 
beam particle deposition on stochastic region map to 
ascertain which particles may be lost via this channel 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Example plot of stochastic domains at fixed µ

•  Evaluate stochastic 
condition on grid in 
(E, Pφ) plane 

•  Red triangles mark 
stochastic locations  

•  White space 
extending in Pφ 
direction indicates 
good surfaces in 
phase space with no 
stochasticity  

•  Green points: 
TRANSP deposited 
beam ions 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Test whether code-modeled stochastic domain presence 
coincides with lost pitch angle ranges 

•  Stochastic maps shown on following slides for 4 pitch angles 
marked (4 µ values) 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Case A (25°) is center of a detected loss spot & model 
predicts loss 

•  Beam ions 
deposited in 
stochastic region 

•  Particles move 
along orange line 
(or parallel lines) 
under influence of 
n=2 mode 

•  Particles clearly 
deposited in 
stochastic region 
and that region 
extends to loss 
boundary 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Case B (40°) is at boundary of no-loss region & model shows 
deposition only on good surfaces 

•  Deposition in a 
region of good 
surfaces in phase 
space means beam 
ions have no 
chance to be 
transported to loss 
boundary, even 
though stochasticity 
exists at other 
locations 

•  Agrees with 
transition to no-loss 
pitch angle range 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Case C (55°) is at boundary of a loss spot; deposition starts 
to appear in stochastic region again 

•  Apparent good 
surfaces around 
Pζ=0 & E> 85 keV 
may prevent some 
of deposited 
population from 
reaching loss 
boundary 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Case D (60°) is in middle of loss spot; deposition squarely in 
stochastic region again 

•  Note that deposition 
is in stochastic 
region and that 
stochasticity exists 
along entire line of 
transport up to loss 
boundary 

•  Both conditions 
required for loss 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Orbit following including mode structure shows bimodal loss 
distribution in pitch angle, as observed 

•  Modeled pitch 
angle boundaries 
roughly agree with 
measurement 

•  Same simulation 
for no loss case 
shows no particles 
reach detector! 

•  Note also that 
detector loss (red 
points) is 
representative of 
all losses (black 
points) 
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APS-DPP 11 – NSTX TAE Avalanche NBI loss (Darrow)

Modeling reveals some beam ions that remain barely 
confined while their energy is greatly diminished by modes 

•  Example is for particle in no loss shot (141711) 
•  Particle above starts passing, later becomes banana orbit 
•  Trajectory in (E, Pφ) plane skirts loss boundary, but stays 

confined 
•  Energy drops from 90 keV to 30 keV before loss 
•  Neutron reactivity drops rapidly as energy falls below 90 keV 
•  What features of modes cause this? 
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Summary 

•  TAE avalanches in similar NSTX plasmas sometimes produce 
observable fast ion loss at wall and sometimes do not 

•  To pursue differences between loss seen vs unseen, 
measured TAE amplitudes and structures were put into ORBIT 
code to compute stochastic orbit domains 

•  Loss appears at a given pitch angle only if: 
–  Beam deposited in stochastic region 
–  Stochasticity extends all the way to the loss boundary along the line of 

transport, with no intervening good surfaces 

•  Loss distribution at detector in ORBIT model shows 2 groups 
of lost particles, in agreement with measurement 

•  Modeling reveals some beam orbits rapidly lose energy in 
avalanche but remain confined–may explain cases when no 
loss observed 
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