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Introduction

• Fast particle transport and losses in presence of 
Low Frequency MHD modes has been long studied 
(TFTR, DIII-D, ASDEX, NSTX, …)

• Often core modes have been addressed, well described by single 
helicity radial perturbation (Tearing Mode, Neoclassical TM, 
internal kink)

• Former studies [1,2] on NSTX focused on (m=2,n=1) internal kink
– Depletion at particle energies below the injection energy (NPA)
– Passing particles (E<Einj) are preferentially affected and lost

• This work addresses early low frequency MHD activity on NSTX
– Extends to the plasma periphery
– Strongly affects fast ion population
– Appears to be an important element for the destabilization of 

High Frequency Alfvénic modes
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• “Fiducial” configuration, t<300 ms
– PNBI=4-6 MW

– βN~2.5-3.5

• MHD activity at different 
frequencies:
– Toroidal AE (bursting)
– Reversed Shear AE
– Global/Compressional AE 

(bursting/continuous)
• Onset of LF mode at t=220 ms

– Rotation collapses (-15kHz)
– βN ramp stops

• Mode vanishes after 100 ms, as 
density increases

Experimental scenario:   H-mode,  Bt=0.4T,  Ip=900kA 

TAErsAE

CAE/GAE

Kink/Tearing
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High Frequency MHD associated with LF mode

• Low Frequency mode enters with 
multiple toroidal harmonics

• n=1 and n=2 persist
• Initial chirp follows the toroidal 

rotation drop (-15kHz)

• Compressional AE cluster  in
1-2.5 MHz frequency range  

• Co-propagating modes, n=9-13
• Appear after onset of LF MHD
• Associated with bump-on-tail 

beam ion distribution function

• Small effect on neutron rate
• Losses <5% estimated from SFLIP 

Scintillator Loss Detector [5]
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FIDA Spectra Show Strong Effect on Fast Ions

• Spectral signal decreases in a broad range of wavelength/energies
• Vertical view → sensitive to low pitch (p=|v||/v| <0.6, E~20-60 keV)
• Low Frequency MHD activity affects the trapped population

Fast Ion D-Alpha diagnostic observes the hot tail of Deuterium 
Balmer-α spectral line (656.1nm) emitted by recombined fast ions [3,4]

R=125.199 m
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•  FIDA density:

• nFIDA provides local information 
about fast ion density

• Affected by the velocity space 
response of the diagnostic

Strong Depletion of FIDA Density at Mode Onset

Depletion nFIDA consistently 
observed after mode onset: 

– up to 30% reduction
– 10 ms time scale
– outboard plasma is affected

first and more

Redistribution in real/velocity space ?
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Fast Ion Redistribution is not Associated with CAEs

• In some discharges HF-CAEs are absent or destabilized later
• nFIDA collapse observed without concurrent CAE activity
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Low Frequency Mode Extends to Plasma Boundary

• Mirnov array indicates  n=1 (Bz~15G at probe location), weaker n=2
• No clear evidence of magnetic island (e.g. in Te or vtor profiles)
• Edge Toroidal SXR array (MESXR) captures peripheral dynamic

Periodic expansion-compression peripheral region (8 kHz, r/a>0.6)
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Reflectometer Measures Pedestal Displacement

• Reflectometer [6] provides local measurement of radial displacement at
selected mode frequencies

• No access to internal mode structure, due to the ne pedestal.

• Radial in-out oscillation measured at 8kHz (n=1): ∆R~17 mm

Electron density profile

O-mode cut-off 
locations

NSTX 142296, t=248 ms
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• Consider t=250ms, saturated phase, 
30 ms after onset

• Plasma configuration from LRDFIT 
equilibrium reconstruction code
– constraints on measured profiles

of pressure and pitch angle
• Only n=1 component considered
• |m|<40 poloidal harmonics included
• Computation up to 99.98% of ψe 

• Configuration is linearly unstable 
to n=1 kink under these conditions:
– Free boundary
– High pressure gradient at pedestal
– Reversed shear in plasma core

PEST Code Predicts Instability to n=1 Kink
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Kink Amplitude Maximal at Outboard Plasma Periphery

• High order poloidal harmonics contribute in the peripheral region
• Mode amplitude is larger in the LFS (m=3-4 effective structure)
• Fine structure in the HFS, but smaller amplitude

m=6

m=5

m=4

m=3

ξr (φ=0)
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Kink Structure Validation Procedure

• 3D ne and Te perturbation from 
radial displacement:

• SXR emissivity assuming 
carbon impurity only:

• Rigid toroidal rotation at 
mode frequency (8 kHz)

Mode structure is checked against measurements 
assuming saturated structure is similar to linear computation
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Kink Structure Validated against Experimental Data

Good agreement with data when ξ is scaled to 2% of PEST output

• δBz at Mirnov coil ~ 15G

• Fluctuating MESXR profile
• Pedestal displacement ±9mm
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Full-Orbit Monte-Carlo Code SPIRAL Used to Predict 
the Perturbed Ion Distribution Function and Particle Losses

• SPIRAL [7] is adequate for NSTX gyroradii (~19cm for 90 keV D ion)
• Beam ions orbits solved in 2 magnetic configurations

– Perturbed fields (PEST n=1 kink, scaled) + unperturbed ref. case 
– Random selection of ionizing neutrals introduced at uniform rate 

along 25 ms simulated time window (birth profile from NUBEAM)
– Energy slowing down time ~15ms for 90keV ion → final distribution 

assumed representative of the steady state 
– Particles hitting the realistic wall model are considered lost

Without kink With kink Increment
Total Beam Ion 

Losses 17.4 % 20.6 % + 3.3 %

Predicted losses consistent with fast ion loss detector (SFLIP) 
Total losses extrapolated from SFLIP observations: <5%
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SPIRAL SPIRAL SPIRAL

Confined Fast Ions are Redistributed in Real Space

Unperturbed 
Fast Ion density nFI 

peaks in the core

Kink effect from differential distribution function: ∆F = Fkink- Fequi 

• With kink fast ion depletion in the core
• Increase of nFI in the outer regions
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Confined Fast Ions are Redistributed in Velocity Space

Slowing down 
distribution function
Einj=90, 45, 30 keV

Enhanced pitch 
angle scattering in 
presence of kink

Slowing down 
distribution shifts 
towards v|| / v = 1

SPIRALSPIRAL WFIDA(25kev)>0.5
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Radial Profile of Pitch Angle Distribution

SPIRALSPIRAL SPIRAL
Magnetic axis →

    LFS         increase of ions with v|| / v >0.5 (more parallel)

    HFS         increase of ions with v|| / v <0.5 (more perpendicular)
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Kink Effect on Radial Profile of Fast Ion Density 

• Decrease of nFI by ~20% in the core

• Increase of nFI  for R<0.9m (HFS) and R>1.3m (LFS) 

• Including the effect of a typical FIDA weight function (Eλ=25keV, 
R=1.2m) leads to an apparent collapse of -25% in the core

SPIRAL SPIRAL

Radial nFI profile obtained by summing all particles in the strip |Z|<0.3 m
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Compressional Alfvén Eigenmode Resonance

• Alfvén waves from the 
compressional branch

• CAE are observed at frequencies fraction of the thermal ion 
cyclotron frequency [8,9]:

• Excited through Doppler shifted ion cyclotron resonance 
condition with beam ions:

• For modes propagating in the beam ion direction only direct 
resonance is possible:

The ion parallel velocity is 
equal to wave phase velocity

In the ion frame the wave oscillates
at the ion cyclotron frequency
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CAE are Localized Within an Effective Potential Well

Effective
Potential Well

Heuristic geometrical model [10] gives: 

“Wave in a box” equation

Eigenvalue equation 
for plasma displacement

Well structure can be evaluated from:
1. Experimental profiles ( B, ni )

2. Selected mode/well parameters

Mode “quantum” numbers

Potential well parameters
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In Kink Scenario CAEs are Localized on the LFS

• Eigenvalue equation can be 
solved [11] separating radial 
and poloidal structure assuming

• Calculation performed for 
a single mode observed in the 
experiment: 
– n=12, co-propagating
–  fEXP=1.79 MHz, fSIM1.75 MHz

• Mode extends radially from the axis to the edge
• Max ampliture at r/a~0.6

• Even poloidal structure, localized at LFS
• Low poloidal number (M<10)

HFS HFSLFS
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With n=1 Kink More Fast Ions are Resonant with CAEs

• Resonances evaluated from heuristic model, assuming realistic mode 
parameters (S=1/2, n=12, M=1-7)

• Select d.f. F(E,p) in the region of mode location: R>1.2 m

Substantial increase of fast ions 
in the phase space region sampled by CAEs resonances

CAE resonances
M = 1 to 7

1

7

7

1
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Conclusions

• LF MHD is observed to affect strongly the fast ion population
– FIDA density reduced as much as 30%
– Small effect on neutron emission rate

• LF mode nature and structure inferred by coupling 
ideal MHD stability calculations to experimental observations
– global kink nature, finite edge amplitude, associated to a residual reversed shear
– a kink perturbed equilibrium has been constructed consistent with SXR emission 

and reflectometry observations

• Full-Orbit simulations with SPIRAL indicate FI redistribution
– Fast ion losses in presence of the kink increase by a small amount ~3%
– Redistribution in both real and velocity space is predicted

• FI redistribution may explain the observed CAE destabilization 
– Kink perturbation is associated with an increase of ions resonating with the modes 

at mode location
– Need to evaluate the actual drive, and estimate growth and damping rates 
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Sign-up sheet



NSTXNSTX 53th APS-DPP Meeting – Fast Ion Redistribution by LF MHD and CAE Destabilzation in NSTX,  A. Bortolon 26 

Rotation braking at kink onset

← Kink frequency 8kHz

• Kink locked at the plasma 
rotation of qmin location
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FIDA measurement concept

• Active Charge eXchange
– Measures hot tails of Balmer alpha
– Large Doppler shift of recombining fast ions
– Background subtraction is crucial

• Effective average over velocity space
– Viewing angle
–  NBI geometry
– Effective CX cross section

• Weighting Wλ(E,p) function gives the 
sensitivity to different velocity space 
regions (pitch parameter p=v||/v)

•+

An approximate Fast Ions Density 
nFIDA can be obtained from 

Fast Ion

CX Rec.

Balmer α
Emission

FIDA
spectrum

Weight
function FI distribution 

function
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Example of FIDA spectrum (NSTX vertical view)

CII

BE

Cold
Dα 

OV

CVI

OV+CII BV
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NSTX FIDA response

• Wλ(E,p) evaluated at 
– R=1.2 m,
– Eλ=35 keV (652.1 nm)
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