

Supported

Initial results from the NSTX Real-Time Velocity diagnostic

Columbia U CompX General Atomics FIU INL Iohns Hopkins U LANL LINL Lodestar MIT Nova Photonics New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

M. Podestà and R. E. Bell

Princeton Plasma Physics Laboratory

53rd APS-DPP Annual Meeting Salt Lake City, Utah November 14-18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI **NFRI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep

Abstract

A new diagnostic for fast measurements of toroidal plasma rotation through active charge-exchange recombination spectroscopy (CHERS) was installed on NSTX. The diagnostic infers toroidal rotation from carbon ions undergoing charge-exchange with neutrals from a heating Neutral Beam (NB). Each of the 4 channels, distributed along the outer major radius, includes active views intercepting the NB and matched background views missing the beam. Estimated uncertainties in the measured velocity are <5% at the maximum sampling rate of 5000 Hz (or <1% at 1000 Hz), to be compared with <0.5% at 100 Hz of the main NSTX CHERS system. Signals are acquired on 2 CCD detectors, each controlled by a dedicated PC. Spectra are fitted in real-time through a C++ processing code and velocities are made available to the Plasma Control System for future implementation of feedback on velocity. Results from the initial tests of the system during a Neon glow are discussed.

Work supported by US-DOE Contract No. DE-AC02-09CH11466

A <u>Real-Time Velocity (RTV)</u> diagnostic is required to implement real-time velocity control on NSTX

- Plasma rotation affects stability and plasma performance
- Measurements every 3 ms (or less) are required to implement real-time rotation control
 - Use Neutral Beams (NB), external coils (*plasma braking*) as actuators to affect rotation
 - Time-scales for plasma response are >10 ms
- Fast (~1 ms) measurements of toroidal plasma velocity are not routinely available on NSTX
 - Present CHERS (<u>charge-exchange recombination spectroscopy</u>) systems acquire at 100 Hz frame rate
 - Transient phenomena not well resolved
 - L-H transition, ELMs, instabilities

NSTX device and RTV overview

Major radius	0.85 m		
Aspect ratio	1.3		
Elongation	2.7		
Friangularity	0.8		
Plasma current	~1 MA		
Foroidal field	<0.55 T		
Pulse length	<2 s		
3 Neutral Beam sources:			
$P_{NBI} \le 6$ MW, $E_{injection} \le 95$ keV			
Actuators for v _{tor} control:			
• NB (core plasma)			
• External coils (edge,	braking)		

RTV hardware - Design constraints and criteria

- Use present CHERS system as reference
- Increase frame rate with respect to CHERS:
 - More fibers/channel
 - No entrance slits, no chopper
 - High throughput spectrometer
- Reduce number of channels/detector to accommodate all fibers
 - Typically 4 channels (paired active/ passive views)
 - > 2 detectors
- Use spare CHERS fibers for active views
 - 210 µm core diameter

Component	Parameters
Spectrometer	KOSI with HD grating
Grating	528.0-530.8 nm
	C VI @ 529.1 nm
Camera	2x Cascade 128+
	max 5kHz sampling
	4 views/camera (2x active+passive pairs)
	8 fibers/view
	16bit resolution
	Flexible binning
Target ops	1kHz sampling
	real-time analysis: v _{tor}
	<5% error on v _{tor}

System design based on data from CHERS: must increase collected light for faster frame rate, similar uncertainties

System	CHERS	RTV
No. of channels	51 (39)	6(5)
Fiber diameter $[\mu m]$	210 (600)	210 (210)
Fibers/channel	2(1)	8 (7)
Frame rate	$100 \ Hz$	$\leqslant 5~\mathrm{kHz}$
Measured quantities	$v_{\phi}, n_C, T_C,$	v_{ϕ}
Monitored line	C VI, 5291 Å	

TABLE I. Main parameters of the CHERS and RTV systems. Values in parenthesis refer to the background views.

- Same CHERS approach of matched active+background
- Use existing CHERS optics
- Relax requirements for instrumental function (T_c measurements): no input slit

Choice of number and location of RTV sightlines based on maximum information from a minimum number of views

Use high-throughput spectrometer coupled to CCD detector; combine signal from 8 fibers on same channel

Use curved image at input to obtain straight vertical image on CCD -> Bin fibers without increasing effective instrumental function

- Split 4 channels over 2 spectrometers
- Group active/background views from same radius on same system for real-time analysis

Multiple fibers are grouped (*binned*) on the CCD to improve SNR; flexible binning schemes possible

- 2 spectra on each row
- Arrange fibers depending on their expected signal
 - Read passive views first
 - Limit smearing (no chopper used) during read-out
- Active/passive pairs from same radius on same detector
 - Fit both spectra together for RT analysis
- Flexible binning
 - Can differ between RT and off-line analysis

C++ software integrates control of the system and real-time analysis of spectra

Typical acquisition

- Control and Analysis software developed in C++ language
- IDL Graphical User Interface used to modify settings before shot
- Monitor shot evolution through MDSplus events
- Use OpenMP[®] to distribute computationally expensive tasks over multiple processors
 - Curve fitting is most time-consuming task
- Send analyzed data (v_{tor}) to Digital-to-Analog converter interfaced with Plasma Control System (PCS)
- Store data in NSTX MDSplus tree after sequence for off-line analysis

Camera timing controlled by programmable Waveform Generator for well-controlled, flexible operation

Up to 8 spectra can be "simultaneously" analyzed in $<120 \ \mu s$ through RT analysis software

- Compare CHERS results with "Real-time" RTV analysis
 - Feed CHERS data to RTV software
- Fit active/background spectra at same time
- Good agreement
 - Stability, reliability of RT fitting routines under test

Example:

- 1 kHz simulated frame rate
- Use Waveform Generator as trigger
- 4 vertical bins, 8 spectra
- Combine 2 bins/channel

-> Computing time not a limiting factor for frame rate

-> Although simplified, RT analysis matches well off-line CHERS results

Initial tests of the system during Neon glow confirm achievement of target design parameters

- Calibration includes absolute intensity
 - Fiber-to-fiber calibration performed using white target plate
 - Absolute scale of measured brightness
 - White target cross-calibrated against Calibration Sphere

- Ne I lines (@ 529.8 nm, 530.5 nm) used for wavelength calibration
- Instrumental function ~4 pixels
- Dispersion ~0.43 A/pixel
 - Can infer T_C >300 eV, depending on SNR
- Design parameters met or exceeded

Comparison with main CHERS system (Neon glow) confirms higher SNR for RTV at same sampling rates

- RTV: 4 fibers, CHERS: 1 fiber
- Keep CHERS timing fixed, vary RTV
- (Signal from Ne glow is ~50x dimmer than during plasma operations)

Current status of the NSTX RTV systems

- Diagnostics installed and tested
 - Spatial and intensity calibrations done
 - Wavelength calibration done from Ne glows
- Developed C++ prototype control software
 - Extensive tests with 'real' NSTX shot cycle performed
 - E.g., Control integrated with NSTX clock, MDS events; read/write data from/to MDSplus tree, etc.
 - Acquisition up to 5 kHz demonstrated
 - Sampling rate adjustable to optimize signal-to-noise
 - 4 bins, 2 spectra/bin as default, but configuration is flexible
 - Frame acquired and analyzed in <200 μs
 - Real-time fitting demonstrated in <120 μ s, multiple bins
 - Multiple gaussians, active/passive spectra + linear background
 - Fit is most time-consuming step in v_{tor} analysis
 - Excellent comparison w/ off-line fit (IDL)
 - Tested Analog Output through PCI card
 - Works OK; no delays observed, well synchronized with other tasks
- Used Windows XP so far, plan to move to Unix for final implementation

Future applications

- RTV enables study of transient phenomena on sub-millisecond time-scale
- Examples of future application include
 - Velocity evolution at L-H transition
 - Effects of ELMs on edge velocity
 - Effects of other instabilities on toroidal rotation
 - Low-frequency MHD (kink)
 - Alfvénic modes, e.g. TAEs, causing large fast ion losses
 - Dynamics associated with plasma braking through external coils
 - Model validation
- Implementation of real-time velocity control
 - Use Neutral Beams, external coils (plasma braking) as actuators