

Supported by

Effect of non-Maxwellian Electron Energy Distributions on Langmuir Probe Measurements and Heat Transmission in Tokamak Divertor Sheaths

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U **SNL** Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

<u>Michael A Jaworski</u>, M.G. Bell, T.K. Gray, R. Kaita, J. Kallman, H. Kugel, B. LeBlanc, A. McLean, S.A. Sabbagh, F. Scotti, V. Soukhanovskii, D.P. Stotler and the NSTX Research Team

53rd Annual Meeting of the APS Division of Plasma Physics Salt Lake City, Utah November 14-18th, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep

Overview

- Tokamak divertor and scrape-off layer orientation
- Overview of Langmuir probe interpretation methods in tokamak devices
 - Classical method
 - Non-local method
- Observation of non-Maxwellian distributions in the NSTX divertor
 - Bi-modal distributions in Langmuir probe results
 - Comparison with spectroscopic measurements
- Empirical plasma reconstruction results
 - Comparison of theoretical sheath heat transmission with IR thermography
- Discussion of non-Maxwellian formation mechanisms
 - Non-local electron transport calculations in the tokamak divertor
- Summary

Divertor plasmas often characterized by low temperatures and steep gradients

NSTX

53rd APS-DPP – Non-Maxwellian Effects in Tokamak Divertors, MA Jaworski (11/15/2011)

Classical interpretation often yields higher temperatures relative to other diagnostics

- Classical interpretation makes use of data up to floating potential
 - Assumes single Maxwellian distribution
 - Only uses ~5% of distribution
 - T_e calculated found to rise as data past floating potential included
- Independent measurements often indicate lower temperatures
 - Thomson scattering on ASDEX had some indications of non-Maxwellian populations
 - Thomson scattering on DIII-D consistently lower T_e than probes
 - Anomalously low sheath heat transmission coeff. On numerous machines (Kallman PP9.00038)

Classical interpretation often yields higher temperatures relative to other diagnostics

Why expect a Maxwellian distribution?

- Maxwellian plasmas assumed on the basis of plasma collisionality
 - Collisionality often calculated based on system length¹
 - Is this reasonable?
- Numerous modeling and theoretical works indicate that non-Maxwellian distributions will arise in tokamak divertors
 - Target plasmas result in low T_e and high N_e – yield large collisionalities in the divertor
 - Non-Maxwellian distributions still obtained
- Modeling indicates that in addition to fieldline connection length, temperature scale length requires consideration as well

¹ PC Stangeby, "The Plasma Boundary of Magnetic Fusion Devices", IoP, 2000.

Other exmples: Fokker-Planck: Chodura, CPP, 1992 PIC modeling: Tskhakaya, JNM, 2011

Non-local probe interpretation provides more complete analysis of IV characteristics

- When electron energy scale length much longer than probe perturbation scale, velocity "diffusion" term negligible
 - $f(r,v) \rightarrow f(x,W)$
 - W is total energy
 - f₀ is distribution far from probe
- Solution for probe characteristic determined by geometry and diffusivity
 - In magnetized plasma, cross-field diffusivity scales with Larmor radius
 - Diffusivity parameter takes form $\psi(W)=\psi_0W^{1/2}$ in this case
- When $\psi_0 >> 1$, first derivative becomes proportional to distribution function (a.k.a. first derivative method)
- Demonstrated on CASTOR tokamak

$$x = r \qquad W = \frac{1}{2}mv^{2} + e\phi(x)$$
$$\lambda_{\epsilon} \gg r_{s}$$
$$\nabla_{x}D_{x}(W)\nabla_{x}f_{0} = 0$$
$$8\pi e \quad \int_{\infty}^{\infty} (W - eV)f_{0}(W)dW$$

$$j_e(V) = \frac{8\pi e}{3m^2\gamma} \int_{eV}^{\infty} \frac{(W - eV)f_0(W)dW}{1 + \frac{W - eV}{W}\psi(W)}$$

$$\psi(W) = \frac{1}{\gamma\lambda(W)} \int_{a}^{\infty} \frac{D(W) \mathrm{dr}}{\left(\frac{r}{a}\right) D(W - e\phi)}$$

$$\frac{\mathrm{d}j_e(V)}{\mathrm{d}V} \propto \frac{(eV)^{3/2}}{\psi_0} f_0(eV)$$

Bernstein, Phys.Rev., 1954 Golubovskii, Sov.J.Plasma Phys, 1981 Arslanbekov, PSST, 1994 Demidov, PoP, 1999 Popov, PPCF, 2009 Godyak, Demidov, J.Phys:D, 2011

High-density Langmuir probe array installed for divertor plasma characterization

- Liquid Lithium Divertor (LLD) installed to study lithium plasma-material interactions
 - See also: R. Kaita PP9.00024, H. Kugel B04.00009
- Probe array characterizes local plasma properties in a range of experiments
 - See also: R. Perkins B04.00008, V. Surla PP9.00043
- Provides high spatial density of measurements
 - 3x33 array of electrodes
 - Swept probe and triple probe configurations used
- Oblique incidence yields smaller effective probe size
 - Probe scale-length less than energy scale length
 - Large inter-probe gap results in thinsheath regime

Bi-modal distributions observed in NSTX divertor

- Typical distributions shown
 - Scrape-off layer plasma where classical T_e~15eV
 - Private plasma example demonstrating $T_{e} \sim 1eV$
- Ion current effects due to sheath growth estimated to avoid including in fits^{1,2}
- Some robust features observed in data
 - Bi-modal distribution often "best" model
 - Cooler bulk population often observed
- Total density calculated from I_{sat}
 - Sound speed calculated using mixture of both plasma populations³
 - Dominated by bulk (cool) population
- Can now make comparisons to other diagnostics

Energy [eV]

¹ Gunn, RSI, 1997; ² Godyak, Demidov, J.Appl.Phys.D, 2011; ³ PC Stangeby, PPCF, 1995

Empirical plasma reconstruction provides framework for checking consistency between diagnostics

- Utilizes measured data points as starting point in constraining plasma models to fill the gaps between diagnostics
- Solution improves as more and more data constrains background
- OEDGE code suite used here: Onion-Skin Method (OSM2)+EIRENE+DIVIMP
 - OSM2 solves plasma fluid equations (mass, momentum, ion and electron energy)
 - EIRENE performs Monte Carlo neutral hydrogen transport, iteratively coupled to OSM2
 - DIVIMP performs Monte Carlo impurity transport (neutral and ion)
- Utilized here to compare probe interpretation methods against other diagnostics

Interpretation methods result in significant variance in density and temperature

- Plasma motion sweeps out profile during discharge, data aggregated and averaged
 - Nominal equilibrium separatrix location at $\psi_N = 1.0$
 - I_{sat} peak (N_e equiv.) provides indicator of LP-based separatrix location
- Significant temperature variance between interpretation methods
 - 10-20eV temperatures with classical method (fit only shown for clarity)
 - 2-5eV temperatures with non-local interpretation
- Lower temperatures result in higher densities with non-local interpretation

Spectroscopy consistent with non-local probe interpretation

- Divertor spectrometer viewing strike-point region during discharge
- Deuterium Balmer lines shown in this spectra
- Pressure broadening analysis indicates density of 3.6x10²⁰ m⁻³ (mean, 2.1-5.5x10²⁰m⁻³ min/max)
 - Consistent with non-local calculation for N_p

Spectroscopy consistent with non-local probe interpretation

- Divertor spectrometer viewing strike-point region during discharge
- Deuterium Balmer lines shown in this spectra
- Pressure broadening analysis indicates density of 3.6x10²⁰ m⁻³ (mean, 2.1-5.5x10²⁰m⁻³ min/max)
 - Consistent with non-local calculation for N_e
 - Not consistent with classical interpretation

How significant a difference? Consider hydrogen rate coefficients determined with collisionalradiative modeling¹

¹ DP Stotler, DEGAS 2 User's Manual, 2009

Empirical reconstruction indicates classical values for the sheath heat transmission coeff. obtained with non-local T

- Sheath heat transmission coefficient, γ, determines the amount of power transferred to a material surface
 - Fluid theory provides theoretical minimum of 5.2 for D plasma¹
 - Previous experiments often indicate lower γ (e.g. γ~2)^{2,3}
- \bullet Calculated γ depends sensitively on $T_{_{\rm e}}$
- OEDGE (OSM2 + EIRENE) background plasma created from LP data
 - Total heat flux to PFCs calculated using plasma, neutrals and rad.
 - Bi-modal distribution γ~9 estimated from multi-component plasma
- Dual-band IR heat flux⁴ indicates non-local interpretation in better agreement

¹ PC Stangeby, 2000, ibid.; ² D Buchenauer, JNM, 1992; ³ J Kallman, PP9.00043; ⁴ AG McLean, PP9.00069

Non-Maxwellian distribution strongly alters T_e calculated and resulting values of sheath heat transmission coeff.

- I-V interpretation below V, only captures high-energy population of distribution
 - Tail population determines classical result for T_e
 - Assumption of single Maxwellian over-estimates plasma temperature
- Indicates that an underlying issue in anomalously low sheath heat transmission coefficients is likely the interpretation of the probe characteristic
 - Originally proposed by PC Stangeby in 1995
- \bullet Uncertainty in analysis is unable to determine γ definitively, but values above theoretical minimum are obtained
 - Classical T_{e} yields γ ~2 here

 $\frac{q_{tot}}{\Gamma kT_e}$

Distribution function analysis indicates increased electron temperatures during operation on plasma-heated LLD

- Discharge sequence repeatedly heated and plasma-conditioned the LLD surface
- Local plasma temperatures elevated with hotter LLD surface temperature $(T_{LD} > T_{metLl})$
- Increase in plasma temperatures correlated with increase in V₁-V₁ potential difference¹
- Understanding the changes during lithium experiments requires us to first find some model for the non-Maxwellian distributions...

¹Jaworski, 2nd Int. Lithium Symp. on Fusion Appl., 2011.

53rd APS-DPP – Non-Maxwellian Effects in Tokamak Divertors, MA Jaworski (11/15/2011)

Non-local electron transport models developed for high gradient regions can be applied to tokamak SOL

- "Non-local" transport occurs when collisional scale lengths become long compared to gradient scale lengths
 - Electrons from high temperature regions reach low temperature regions with few collisions
- Simple Krook model developed for laserproduced plasmas¹
 - Dist. function split into isotropic and anisotropic portions (f₀, f₁)
 - Coordinate transform allows reduction to single ODE in f₁
- Solution depends on scale parameter k
- Can be solved with Green's functions

¹ Mannheimer, PoP, 2008; See also YI3:00003 Friday

Krook non-local transport model reproduces bi-modal distribution temperatures

Fluid plasma profile used as background

Fluid solution obtained with OEDGE

53rd APS-DPP – Non-Maxwellian Effects in Tokamak Divertors, MA Jaworski (11/15/2011)

Summary and Conclusions

• "Classical" interpretation of Langmuir probes prone to inconsistencies with other diagnostics

•Non-local probe interpretation is applied to these discharges

- Non-Maxwellian distributions have been inferred
- Bi-modal structure with a cooler bulk plasma often the best model for the data

•Comparison with other diagnostics indicates better agreement with non-local interpretation than with classical interpretation

- Spectroscopic line broadening, high-N lines
- Resulting heat fluxes indicate classical SHTC in reasonable agreement with data
- •Distribution function found to vary during lithium experiments
 - Increase in plasma temperature found in both the cool, bulk plasma as well as the tail population

•Krook model for non-local transport applied using background fluid solution obtained using empirical plasma reconstruction

Krook model reproduces observed bi-modal distribution temperatures

•Application of PIC simulations underway...

This work supported on Department of Energy contract: DE-AC02-09CH11466

Backups

Fluctuations remain at similar levels in the two discharges

- Fluctuations are present in both discharges
 - Measured with Triple Langmuir probes within 1cm of swept probe
 - Non-local analysis limited to Gaussian PDFs
 - This is most easily obtained near strike-point as turbulence increases in the far-SOL
- However, fluctuation characteristics are nearly identical in the two discharges (RMS, skewness, kurtosis) yet the hot electron energy fraction increased
 - While fluctuations may be responsible for some of the EEDF shape, they cannot be the only component

Simulated distribution via summation of Maxwellians does not reproduce observations as well as Krook model

- Consider a fluctuating plasma that is made of fully Maxwellianized portions
 - Triple Langmuir probes provide measure of T_e equivalent to classical interpretation¹
 - Probability distribution function,
 φ, best modeled as Gaussian distribution of temperatures
- Using the measured fluctuation RMS, very little range in fitted T_a is found
 - Can only reproduce observed bimodal structure if bi-modal temperature distribution used for PDF
 - However, near-SOL plasma does not have RMS/mean ~4 needed to match EEDF observations

¹Jaworski, RSI, 2010.

CR-model and OEDGE solution indicate spectroscopic lines consistent with non-local bulk temperature

- Collisional-radiative model by DP Stotler provides excited states up to n=9
 - Local contribution estimated from plasma background density of 3e20m⁻³
 - Contribution from neutrals obtained from EIRENE peak density at target plate
 - CR model assumes Maxwellian elec.
 - A_i values obtained from NIST
- •Line strengths normalized to B6 line intensity from spectrometer
- Preliminary comparison with data is encouraging
 - Re-calculation with measured distribution function will provide more consistent model

