

Supported by

Experimental Study of Parametric Dependence of Electron-gyro Scale Turbulence on NSTX

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Y. Ren¹

W. Guttenfelder¹, S.M. Kaye¹, E. Mazzucato¹, K.C. Lee², C.W. Domier² and the NSTX Team 1. PPPL 2. U.C. Davis

53rd Annual Meeting of the Division of Plasma Physics, Salt Lake City, UT November 17th, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kvoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP**, Garching ASCR. Czech Rep

Office of

Science

NSTX in a Unique Regime to Address Electron Scale Turbulence and Its Relation to Electron Thermal Transport

- Typical transport properties of NSTX NBI-heated H-mode plasmas
 - Neoclassical level of ion thermal transport due to large ExB shear and low aspect ratio <u>E</u>
 - Dominant heat loss in the electron channel
- ETG potentially important for NSTX
 - Short wavelength on electron-gyro scale
 - Large growth rate, surviving large ExB shear

NSTX in a Unique Regime to Address Electron Scale Turbulence and Its Relation to Electron Thermal Transport

- Typical transport properties of NSTX NBI-heated H-mode plasmas
 - Neoclassical level of ion thermal transport due to large ExB shear and low aspect ratio ⁽³¹⁰⁾ <u>E</u>
 - Dominant heat loss in the electron channel
- ETG potentially important for NSTX
 - Short wavelength on electron-gyro scale
 - Large growth rate, surviving large ExB shear
 - Can generate larger normalized thermal transport than ITG due to weaker electronscale zonal flow and secondary instability

$$\frac{\chi_i^{ITG}}{\chi_i^{gB}} \sim 1 \quad \frac{\chi_e^{ETG}}{\chi_e^{gB}} \sim 10$$

$$\chi^{gB}_s\equivrac{
ho_s^2 v_{Ts}}{L_{Ts}}$$

Dorland et al., PRL 2000
Jenko et al., PoP 2001
Nevins et al., PoP, 2006

- Measurement method
- Study effects of density gradient on high-k turbulence
- Investigation of collisionality dependence of high-k turbulence
- Summary

High-k Microwave Scattering System Used to Measure Electron-Scale Turbulence

D.R. Smith, PhD thesis, 2009

- 280 GHz microwave is launched as the probe beam.
- Coherent scattering by plasma density fluctuations occurs when the three-wave coupling condition is satisfied:

$$\overrightarrow{k_s} = \overrightarrow{k_p} + \overrightarrow{k_i}$$

Bragg condition determines k_p:

 $k_p = 2k_i sin(\theta_s/2)$

• The scattered light has a frequency of:

 $\omega_s = \omega_p + \omega_i$

with ω_s and $\omega_i >> \omega_p$

- The scattering system characteristics are:
 - Frequency bandwidth: 5 MHz
 - Heterodyne receiver: Wave propagation direction resolved
 - Measurement: k_r spectrum
 - Wavenumber resolution: 0.7 cm⁻¹ (2/a with a ≈ 3 cm)
 - Wavenumber range (k_r) : 5-30 cm⁻¹ (~5-30 ρ_s^{-1})
 - Radial resolution: ±2 cm
 - Tangential resolution: 5-15 cm
 - Radial range: R=106 144 cm
 - Minimal detectable density fluctuation: $\left| \delta n_e(k) / n_e \right|^2 \approx 2 \times 10^{-11}$

Density Gradient Dependence

Density Gradient Stabilization of ETG Turbulence

 ETG turbulence can be stabilized by large density gradient, and the critical T_e gradient can be written as (Jenko et al., PoP 2001):

 $(R_0/L_{T_e})_{crit} = Geometric dependence no yet quantified for STs,$ $max{(1 + Z_{eff} \frac{T_e}{T_i})(1.33 + 1.99\hat{s}/q)f(\epsilon, \kappa, \delta, \cdots), 0.8R_0/L_{n_e}}}_{\epsilon \text{ is aspect ratio; } \kappa \text{ is elongation; } \delta \text{ is triangularity}}}$

- The second term is solely determined by density gradient and can overcome the first term when density gradient is large enough
- TEM can be destabilized by density gradient (Romanelli and Briguglio, 1990)
 - Unless collisionality is large enough to detrap electrons which is not likely the case in NSTX

Large Density Decrease Observed after a Large ELM Event

Large Density Gradient Induced by the ELM Event

- After the ELM event:
 - Large density gradient developed in the high-k measurement region.
 - Electron temperature gradient also increases
 - Electron density has only a moderate decrease
 - Electron temperature remains essentially constant
 - No large rotating MHD mode before or right after ELM

Spectral Power of Modes at Smaller Wavenumber is Significantly Reduced After ELM

- Significant decrease in wavenumber spectral power is observed for modes with longer wavelength, $k_\perp\rho_s\lesssim 10$
- Before ELM, larger wavenumbers, $k_\perp \rho_s \gtrsim 15$, is beyond the maximum wavenumber range of the high-k system
 - Larger refraction after ELM leads to increase in $k_{\perp}\rho_s$ for each channel

Electron Thermal Diffusivity is Decreased by about a Factor of 2 after the ELM Event

• The decrease in electron thermal diffusivity correlates well with the decrease in measured turbulence spectral power

Linear Stability Analysis Showing Unstable ETG before the ELM Event

• Before ELM, ETG is largely unstable

• Stability Analysis was performed with the GS2 code (Kotschenreuther et al., 1995)

Stabilization of ETG Modes Found after the ELM Event

• Before ELM, ETG is largely unstable

• After ELM, ETG is largely stable

• Stability Analysis was performed with the GS2 code (Kotschenreuther et al., 1995)

Density Gradient Found to be Responsible for Increased Critical Temperature Gradient

• Before ELM, ETG is largely unstable

• Manually decreased R_0/L_{n_e} brings down critical gradient

• Stability Analysis was performed with the GS2 code (Kotschenreuther et al., 1995)

Electron Conduction Loss Found to Decrease after ELM with Large Density Gradient

Nonlinear ETG Simulation Reproducing Observed Dependence of Electron Transport on Density Gradient

- Experimental Q_e is found to decrease after the ELM event with large density gradient
- The same trend is found from nonlinear ETG simulations, but does not agree quantitatively

GYRO references: Candy and Waltz, PRL 2003; Belli and Candy, GYRO Technical Guide

Nonlinear ETG Simulation Predicted Q_e Sensitive to Temperature Gradient

- Before ELM, a 40% increase in a/L_Te $\,$ is able to match the experimental Q_e
- After ELM, increasing a/L_Te by 40% after still cannot match experimental $\rm Q_e$

TEM Destabilized by Density Gradient Contributing to Transport

- Large TEM-induced transport (~30 MW) is found after ELM without ExB shear stabilization
 - Easily match experimental Q_e with experimental amount of ExB shear

Investigation of Collisionality Dependence

Strong Collisonality Dependence Observed in NSTX Confinement Scaling

- NSTX confinement scales strongly with collisonality as $B_T au_E \propto
 u_e^{*-1}$
 - Mechanism behind the scaling is not understood
- Possible mechanisms:
 - Collisional damping of ETG zonal flow (Kim et al., PRL 2003)
 - Destabilizing of micro-tearing instability by collisionality in high beta plasmas (More in Guttenfelder's 12:00 talk)
- In this investigation, we concentrate on low beta plasmas, where micro-tearing instability is stable and ETG is unstable

Collisionality Scan Conducted with Constant B_T/I_p

Collisionality Scan Conducted with Constant B_T/I_p

- The high collisionality shot has larger MHD activities due to an n=1 magnetic island which does not overlap with high-k measurement
- Density perturbation due to the island in the high-k measurement region is found to be about 5% evaluated using a FIR interferometer

Local Collisionality Variation Achieved with Constant ρ_e , β_e and q_{95}

• Profiles chosen to have $T_e \propto B^2$ well maintained from R=130-145 cm: local ν_e^* was varied with constant ρ_e and β_e

Local Collisionality Variation Achieved with Constant ρ_e , β_e and q_{95}

- Profiles chosen to have $T_e \propto B^2$ well maintained from R=130-145 cm: local ν_e^* was varied with constant ρ_e and β_e
- A factor of abut 2.5 change in $\nu_{\rm e}^{\,*}$ is achieved
- q₉₅ kept constant with fixed ratio of B_T/I_p
- ρ_e and β_e have only small variations against ν_e^* , ~10%
- Consistent with previous confinement scaling: $B_T au_E \propto
 u_e^{*-1}$

High-k Turbulence Power Appears to Increase as ν_e^* Decreases

• High-k turbulence power at k_p >9 appears to decrease as $\nu_{\rm e}{}^{*}$ increases

ExB Shear Maybe Responsible for the Spectral Difference in the Two Low ν_e^* Shots

- High-k turbulence power at $k_{\perp}\rho_s$ >9 appears to increase as ν_e^* decreases
- The same relationship may hold for $k_{\perp}\rho_s <9$ if ExB shear stabilization is taken into account

Local Nonlinear ETG Simulations Performed with Experimental Profiles

 Local nonlinear GYRO simulations show large deviation against experimental Q_e

Local Nonlinear ETG Simulations Showing Weak Collisionality Dependence

- Scans in ν_{ei} are based on both high and low collisionality shots
- Weak dependence on ν_{ei} is found

Large Profile Variations Requiring Nonlinear Simulation at Multiple Radial Locations

	r/a	q	S	a/L _{ne}	$ u_{ei}$ (C _s /a)	γ_{ExB}
141040	.6271	1.8-2.1	0.8-1.9	0.7-2.7	0.7-1.3	0.2-0.5
141031	.5765	1.5-1.7	0.9-1.3	0.6-2.2	1.9-2.8	0.1-0.3

- Match with experimental Q_e found at one radii for the high collisionality shot
- Large discrepancy found for the low collisionality shot

Density Gradient Important for Determining Predicted Electron Heat Flux in ETG Simulations

• Predicted electron heat flux is found to be anti-correlated with density gradient 141031 (high collisionality) 1.6 1.6 2.2 1.6 Q_e from nonlinear ETG simulation

Mechanisms in Addition to ETG Needed to Account for Observed Turbulence and Transport

- Previous confinement scaling observed: $B_T au_E \propto
 u_e^{*-1}$
- Here we found:
 - Observed change in high-k turbulence does not show a simple picture in the collisionality scan
 - Collisionality has no effects in the nonlinear ETG simulations
 - Predicted heat flux in agreement with experiment only at one position
 - Not able to reproduce observed change in the experimental Q_e or measured high-k turbulence in the scan
- Large profile variation, especially ExB shear and density gradient, may allow ion-scale turbulence to affect electron transport
 - ITG growth rate found to be 2 times larger than ExB shear rate at certain radial location
 - Spatial variation on several ion gyro-radius (~6 ρ_i)
 - Large ITG eddies (~7 ρ_i) expected to enhance transport
 - Global ion-scale simulations will be pursued

Summary

- Parametric dependence of high-k turbulence is investigated with a microwave scattering system on NSTX
- Density gradient stabilization of high-k turbulence and correlation with confinement improvement have been observed
 - Linear stability analysis supports the observed high-k turbulence is ETG
 - Nonlinear ETG simulation could predict experimental level of transport before ELM, but not after ELM
- Collisionality dependence of high-k turbulence is investigated
 - Measured high-k turbulence appears to decrease as collisionality increases
 - Nonlinear ETG simulations shows weak dependence on collisonality
 - Mechanisms in addition to ETG needed to account for observed turbulence and transport

Acknowledgement: Work supported by DoE and authors would like to thank NERSC for providing computation resources

Backup Slides

Significant Decrease in Scattering Signal Power Observed After the ELM Event

- Channels saw decreased scattering power after the ELM event
- Fluctuations propagate in the electron diamagnetic drift direction, consistent with ETG instability

Nonlinear ETG Simulation Reproducing Observed Dependence of Electron Transport on Density Gradient

- Experimental Q_e is found to decrease after the ELM event with large density gradient
- The same trend is found from nonlinear ETG simulations

Trend confirmed by varying a/L_{ne} (increase and decrease)

Ion Transport in Neoclassical Level

- Ion thermal transport is observed to be in neoclassical level
 - Neoclassical χ_i is calculated using NCLASS model implemented in TRANSP

Largest Change in Electron Density Gradient after the ELM Event

- A factor of five increase in the normalized density gradient after the ELM event
- 60% increase in the normalized T_e gradient and 60% decrease in T_i gradient
- The ion temperature has a 40% increase
- All other quantities have change no more than 25%

Density Gradient Increase Affects both the Linear Growth Rate and Mode Real Frequency

- Unstable mode propagates in the electron diamagnetic direction
- Density gradient increase no only reduces the peak linear growth, but also shift it to higher wavenumber
- Density gradient increase also reduces mode real frequency, At R=133.5 cm

Comparison with High-k Measurements: A Challenging to Numerical Simulation

- High resolution in k space needed in simulations for comparison with measurements
 - High-k measured k_{θ} 's fall between the zonal flow component (k_{θ} =0) and first finite k_{θ} mode
 - Need a better k_r resolution
- A high-k-like interpolation showing decrease of k spectral power after ELM

Five wavenumbers measured by the high-k scattering system

Linear Stability Analysis Showing ETG mode is Robustly Unstable

	r/a	T_i/T_e	q	S	s/q	a/L _{Te}	a/L _{ne}	Z_{eff}	$ u_{ei}(C_s/a)$	eta_e	β'	γ_{ExB}
141040	0.66	1.12	1.92	1.23	0.64	4.64	2.36	1.19	0.96	0.012	-0.27	0.45
141031	0.6	1.18	1.54	1.04	0.672	4.56	1.64	1.22	2.15	0.014	-0.27	0.21

- q, s, $\gamma_{E \times B}$ and a/L_{ne} are not well matched
- ν_{ei} is varied by about factor of 2

ETG Modes Have Weak Collisionality Dependence

	r/a	T_i/T_e	q	S	s/q	a/L _{Te}	a/L _{ne}	Z_{eff}	$ u_{ei}(C_s/a)$	eta_e	β'	γ_{ExB}
141040	0.66	1.12	1.92	1.23	0.64	4.64	2.36	1.19	0.96	0.012	-0.27	0.45
141031	0.6	1.18	1.54	1.04	0.672	4.56	1.64	1.22	2.15	0.014	-0.27	0.21

• Growth rate calculated with doubled ν_{ei} for 141040 and with halved ν_{ei} for 141031

ETG Growth Rate Found More Sensitive to q and Density Gradient

	r/a	T _i /T _e	q	S	s/q	a/L _{Te}	a/L _{ne}	Z _{eff}	$ u_{ei}$	eta_e	β'	γ_{ExB}
141040	0.66	1.12	1.92	1.23	0.64	4.64	2.36	1.19	0.96	0.012	-0.27	0.45
141031	0.6	1.18	1.54	1.03	0.67	4.56	1.64	1.22	2.15	0.014	-0.27	0.21

- q and a/L_{ne} contribute more to the change in γ than collisonality
- Change in s-hat has small effect on γ

