
Simulation of microtearing turbulence in NSTX and scaling with collisionality

Walter Guttenfelder¹

J. Candy², S.M. Kaye¹, W.M. Nevins³, E. Wang³, J. Zhang⁴, R.E. Bell¹, N. Crocker⁴, B.P. LeBlanc¹, G.W. Hammett¹, D.R. Mikkelsen¹, Y. Ren¹, H. Yuh⁵

¹PPPL, ²General Atomics, ³LLNL, ⁴UCLA, ⁵Nova Photonics Inc.

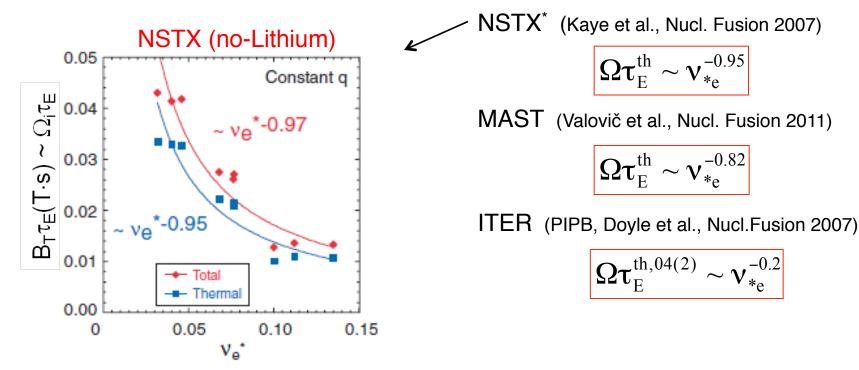
APS-DPP, Salt Lake City Nov. 14-18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI** KAIST **POSTECH** ASIPP ENEA. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

Columbia U CompX General Atomics FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **ORNL** PPPL Princeton U **Purdue U** SNL Think Tank. Inc. **UC Davis UC Irvine** UCLA UCSD U Colorado **U Illinois U** Marvland

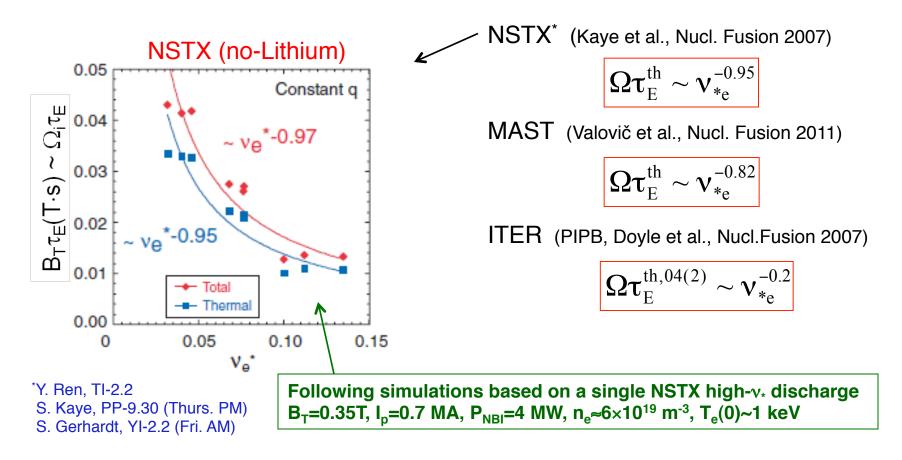
U Rochester

U Wisconsin


U Washington

Overview

- Experimental motivation favourable $\Omega_i \tau_{E,th} \sim \nu_*^{-(0.8-0.95)}$ dependence in STs
 - Microtearing modes found to be unstable in experimental ν_* scans, $\gamma_{lin} \sim \nu_e$
- Linear microtearing properties for high-β NSTX discharges
 - Electromagnetic, electron drift mode with narrow resonant current layer, Δ_{i} < ρ_{s}
 - Non-monotonic dependence on $v^{e/i}/\omega$, threshold in β_e and ∇T_e
 - Z_{eff} (and s/q) scaling distinct from ETG
- Non-linear simulations
 - Necessary to "resolve" (distinguish) each simulated rational surface
 - Transport is experimentally significant and dominated by magnetic "flutter"
- Scaling of non-linear transport
 - Predicted $\chi_{e,sim} \sim v_e^{-1.1}$ close to experimental trend
 - "Stiff" with ∇T_e but suppressible by experimental levels of E×B shear



Experimental motivation - strong collisionality scaling in STs

- *Y. Ren, TI-2.2
- S. Kaye, PP-9.30 (Thurs. PM)
- S. Gerhardt, YI-2.2 (Fri. AM)
- Ion transport is neoclassical, consistent with strong toroidal flow and flow shear
- What is the cause of anomalous electron thermal transport?
- Will favorable τ_E scaling hold at lower ν_* envisioned for next generation ST (high heat flux, CTF, ...)?

Experimental motivation - strong collisionality scaling in STs

- Ion transport is neoclassical, consistent with strong toroidal flow and flow shear
- What is the cause of anomalous electron thermal transport?
- Will favorable τ_E scaling hold at lower v_* envisioned for next generation ST (high heat flux, CTF, ...)?

GYRO* used for gyrokinetic simulations

• Eulerian solver of gyrokinetic-Maxwell equations, evolving $\delta f(E,\lambda,r,\alpha,\theta)$

$$\begin{split} \delta f \sim \delta \hat{f}(r,\theta) e^{-in\alpha} & \alpha = \phi + \nu(r,\theta) \approx \phi - q(r)\theta \\ k_{\theta} & \doteq \frac{nq}{r} & \text{High-aspect ratio,} \\ low \beta \text{ limit} & \text{radial} \end{split}$$

- Kinetic ions (D+C) and electrons, general equilibrium
- Fully collisional & electromagnetic ($\delta A_{||}$, $\delta B_{||}$) (both important in NBI heated ST)
- Freedom to include toroidal flow and flow shear (important in NBI heated ST)
- Can use experimental profile variations, T(r), n(r), q(r), etc... (likely important in ST, ρ_s/a~1/100, ρ_s/L~1/40)

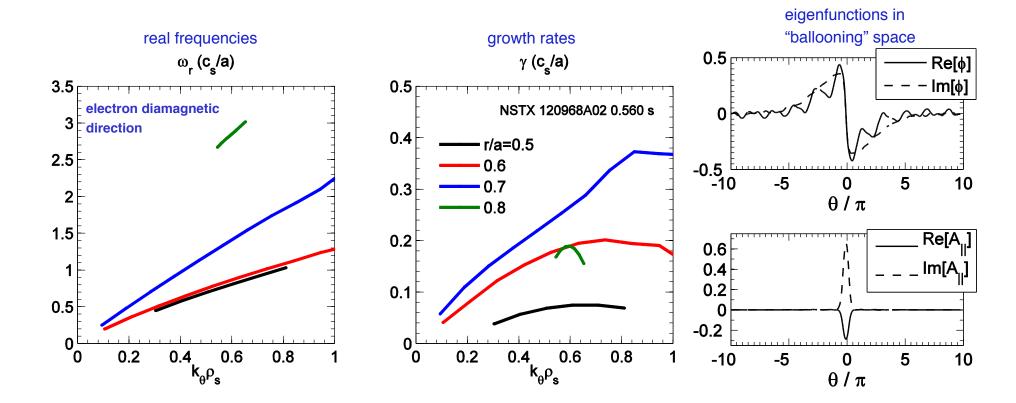
^{*}J. Candy & R.E. Waltz, Phys. Rev. Lett. **91**, 045001 (2003); J. Comp. Physics **186**, 545 (2003); https://fusion.gat.com/theory/Gyro

J. Candy, Phys. Plasmas Control. Fusion 51, 105009 (2009); E.A. Belli & J. Candy, Phys. Plasmas 17, 112314 (2010).

GYRO* used for gyrokinetic simulations

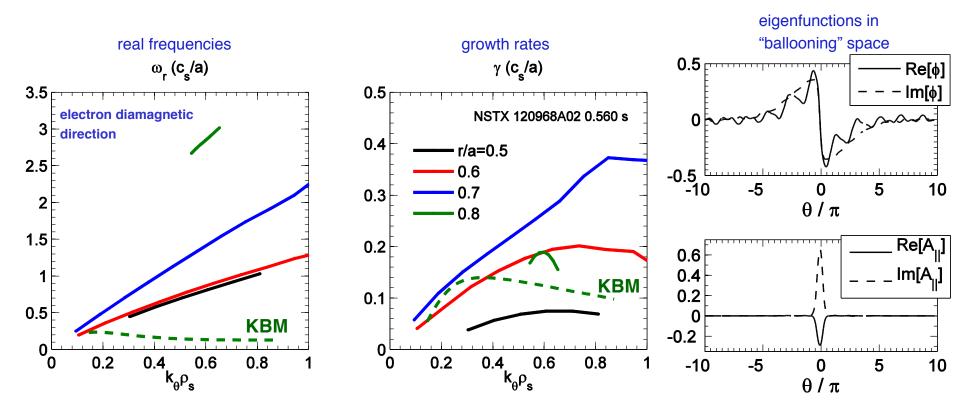
• Eulerian solver of gyrokinetic-Maxwell equations, evolving $\delta f(E,\lambda,r,\alpha,\theta)$

$$\begin{split} \delta f \sim \delta \hat{f}(r,\theta) e^{-in\alpha} & \alpha = \phi + \nu(r,\theta) \approx \phi - q(r)\theta \\ k_{\theta} & \doteq \frac{nq}{r} & \text{High-aspect ratio,} \\ low \beta \text{ limit} & \text{parallel binorma radial} \end{split}$$


- Kinetic ions (D+C) and electrons, general equilibrium
- Fully collisional & electromagnetic ($\delta A_{||}$, $\delta B_{||}$) (both important in NBI heated ST)
- Freedom to include toroidal flow and flow shear (important in NBI heated ST)
- Can use experimental profile variations, T(r), n(r), q(r), etc... (likely important in ST, -ρ_s/a~1/100, ρ_s/L~1/40)
- All following <u>linear</u> calculations performed in the local flux-tube limit (periodic BC's)
 without toroidal flow & shear

^{*}J. Candy & R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003); J. Comp. Physics 186, 545 (2003); https://fusion.gat.com/theory/Gyro

J. Candy, Phys. Plasmas Control. Fusion 51, 105009 (2009); E.A. Belli & J. Candy, Phys. Plasmas 17, 112314 (2010).


Microtearing modes found to be unstable in many high v_{*} discharges

- Microtearing dominates over r/a=0.5-0.8, k_θρ_s<1 (n≈5-70)
- Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta} \rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG mostly stable due to larger $Z_{eff} \approx 3$, $(R/L_{Te})_{crit,ETG} \sim (1+Z_{eff}T_e/T_i)$

Microtearing modes found to be unstable in many high v_{*} discharges

- Microtearing dominates over r/a=0.5-0.8, k_θρ_s<1 (n≈5-70)
- Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta} \rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG mostly stable due to larger Z_{eff}≈3, (R/L_{Te})_{crit,ETG}~(1+Z_{eff}T_e/T_i)
- KBM competes farther out (r/a \geq 0.8) where α_{MHD} =-q²R β' much larger (larger q, a/L_n)

Following calculations mostly for r/a=0.6

Linear microtearing instability

- High-m tearing mode around a rational $q(r_0)=m/n$ surface $(k_{||}(r_0)=0)$ (Classical tearing mode stable for large m, $\Delta' \approx -2m/r < 0$)
- Driven by ∇T_e with time-dependent parallel thermal force* ⇒ requires e-i collisions

Conceptual linear picture

• Imagine helically resonant (q=m/n) δB_r perturbation

$$\delta B_r \sim cos(m\theta - n\phi)$$

• δB_r leads to radially perturbed field line, finite island width

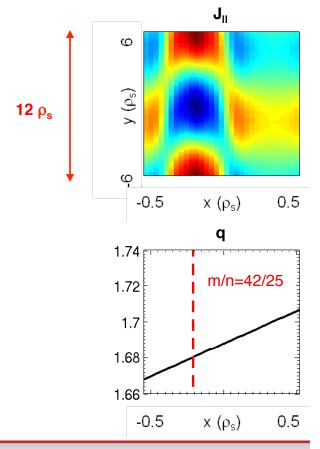
$$w = 4 \left(\frac{\delta B_r}{B} \frac{rR}{n\hat{s}} \right)^{1/2}$$

• ∇T_e projected onto field line gives parallel gradient

$$\nabla_{||} T_{e0} = \frac{\vec{B} \cdot \nabla T_{e0}}{B} = \frac{\delta B_r}{B} \nabla T_{e0}$$

• Parallel thermal force $(R_{T||} \sim -\alpha(\omega) n_e \nabla_{||} T_e)$ drives parallel electron current that reinforces δB_r via Amperes's law $k^2 \sigma^2 \hat{A}_u = \frac{\beta_e}{i} \hat{i}_u \qquad B_r = ik$

$$k_{\perp}^{2}\rho_{s}^{2}\hat{A}_{\parallel} = \frac{\beta_{e}}{2}\hat{j}_{\parallel}$$
, $B_{r} = ik_{\theta}A_{\parallel}$

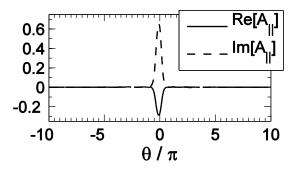

• Instability requires sufficient ∇T_e , β_e , ν_e , and time dependence (ω) important

*e.g. Hazeltine et al., Phys. Fluids 18, 1778 (1975); Gladd et al., Phys. Fluids 23, 1182 (1980); D'Ippolito et al., Phys. Fluids 23, 771 (1980); M. Rosenberg et al., Phys. Fluids 23, 2022 (1980).

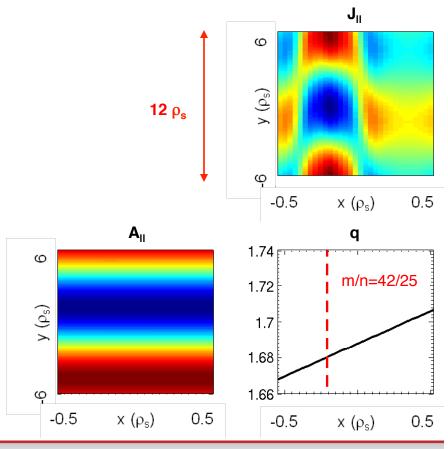
Linear mode structure in perpendicular plane illustrates key microtearing mode features

Narrow resonant current channel (≈0.3ρ_s≈1.4 mm) centered on rational surface

x-y perpendicular plane (θ =0)

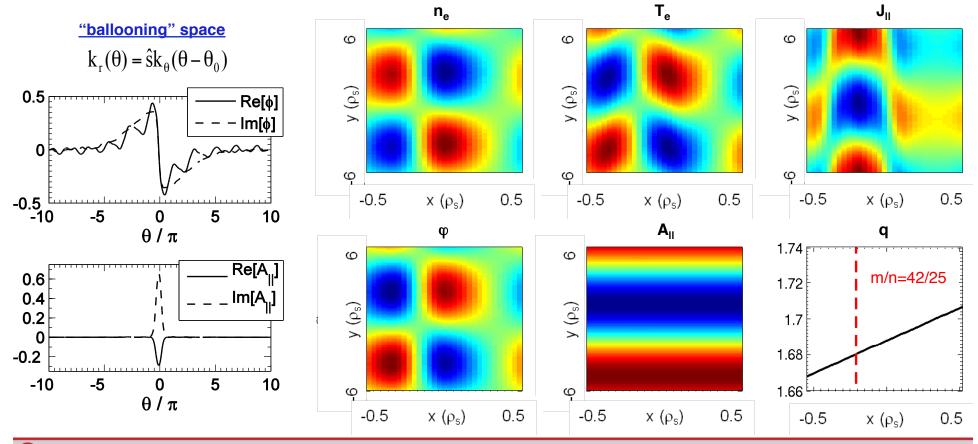


Linear mode structure in perpendicular plane illustrates key microtearing mode features

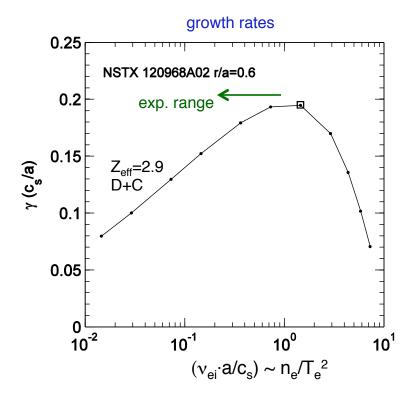

- Narrow resonant current channel (≈0.3ρ_s≈1.4 mm) centered on rational surface
- Finite $\langle A_{||} \rangle_{\theta}$ (resonant tearing parity), strongly ballooning

"ballooning" space

$$k_r(\theta) = \hat{s}k_{\theta}(\theta - \theta_0)$$

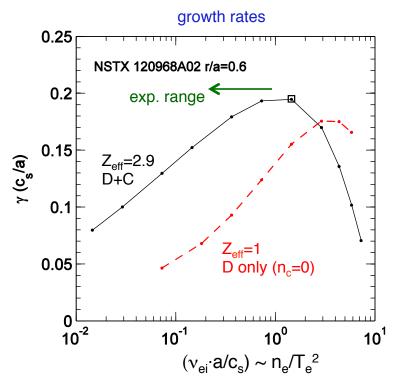

x-y perpendicular plane (θ =0)

Linear mode structure in perpendicular plane illustrates key microtearing mode features


- Narrow resonant current channel (≈0.3ρ_s≈1.4 mm) centered on rational surface
- Finite $\langle A_{||} \rangle_{\theta}$ (resonant tearing parity), strongly ballooning
- Narrow n_e & T_e perturbations
- Nearly unmagnetized/adiabatic ion response $\Rightarrow \frac{\widetilde{n}}{n_0} \approx -Z_{eff} \left(\frac{e\widetilde{\varphi}}{T_i} \right)$

x-y perpendicular plane (θ=0)

A distinguishing feature of the microtearing mode is the non-monotonic dependence on $v^{e/i}/\omega$


- Peak γ occurs for $v^{e/i}/\omega = Z_{eff} \cdot v_{ei}/\omega \sim 1$ -6, similar to slab calculations (Gladd et al., 1980)
- γ decreases with ν_e in experimental range, qualitatively consistent with confinement scaling

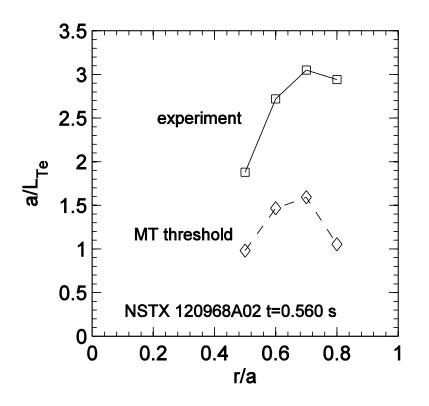
$$v^{e/i} = Z_{eff} v_{ei} \propto Z_{eff} \frac{n_e}{T_e^{3/2}}$$

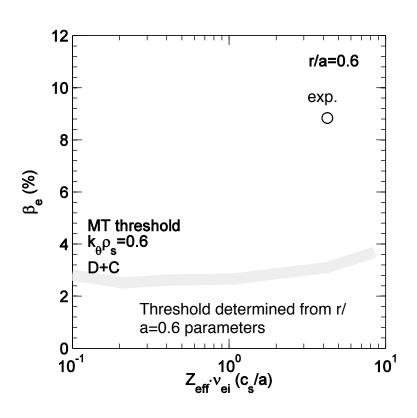
A distinguishing feature of the microtearing mode is the non-monotonic dependence on $v^{e/i}/\omega$

- Peak γ occurs for $v^{e/i}/\omega = Z_{eff} \cdot v_{ei}/\omega \sim 1$ -6, similar to slab calculations (Gladd et al., 1980)
- γ decreases with ν_e in experimental range, qualitatively consistent with confinement scaling
- In addition to shifting peak in $v^{e/i}/\omega$, Z_{eff} can enhance instability through shielding potential (from adiabatic ion response, $\delta n_i \sim -Z_{eff} \delta \phi / T_i$)

$$\mathbf{v}^{\text{e/i}} = \mathbf{Z}_{\text{eff}} \mathbf{v}_{\text{ei}} \propto \mathbf{Z}_{\text{eff}} \frac{\mathbf{n}_{\text{e}}}{\mathbf{T}_{\text{e}}^{3/2}}$$

Jenko et al. (2001)

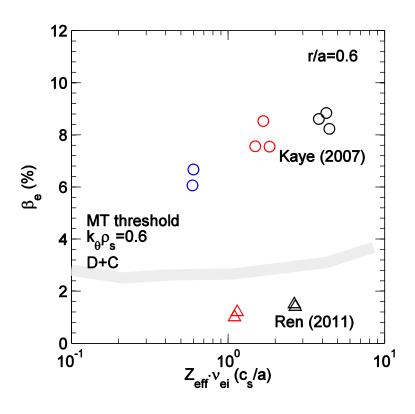

• Z_{eff} (and s/q)* dependence opposite to ETG expectations $\left(\frac{R}{L_{\text{Te}}}\right)_{\text{crit}} \sim \left(1 - \frac{R}{L_{\text{Te}}}\right)_{\text{crit}} \sim \left($


$$\left(\frac{R}{L_{Te}}\right)_{crit}^{ETG} \sim \left(1 + Z_{eff} \frac{T_e}{T_i}\right) \left(1.3 + 1.9 \frac{s}{q}\right) (\cdots)$$

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011)

Microtearing instability exhibits thresholds in electron temperature gradient and beta

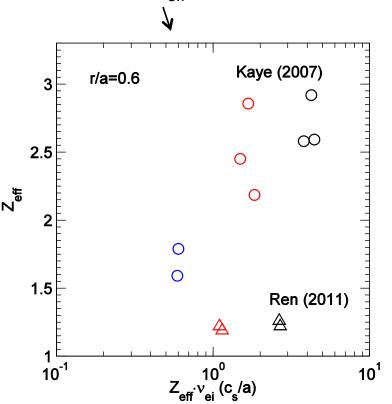
• In this high- v_* discharge, a/L_{Te} and β_e are 2-3× larger than linear thresholds

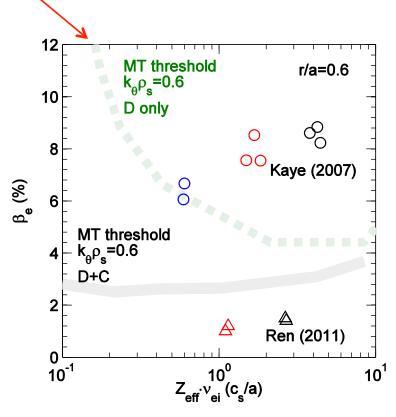


^{*} Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011)

NSTX has studied electron transport for a range of beta and collisionality

• Ren (2011) v_* experiment (invited talk TI-2.2) performed at lower β_e compared to Kaye (2007) (lower density and NBI power)

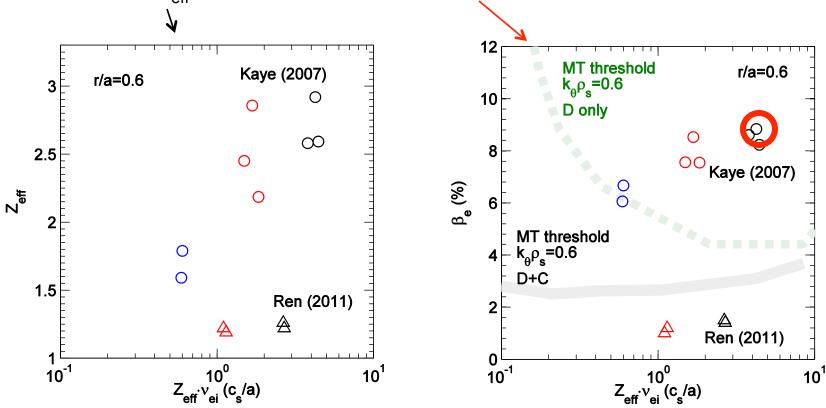




NSTX has studied electron transport for a range of beta and collisionality

• Ren (2011) v_* experiment (invited talk TI-2.2) performed at lower β_e compared to Kaye (2007) (lower density and NBI power)

Also at lower Z_{eff} – increase in MT threshold, but smaller ETG threshold



NSTX has studied electron transport for a range of beta and collisionality

• Ren (2011) v_* experiment (invited talk TI-2.2) performed at lower β_e compared to Kaye (2007) (lower density and NBI power)

Also at lower Z_{eff} – increase in MT threshold, but smaller ETG threshold

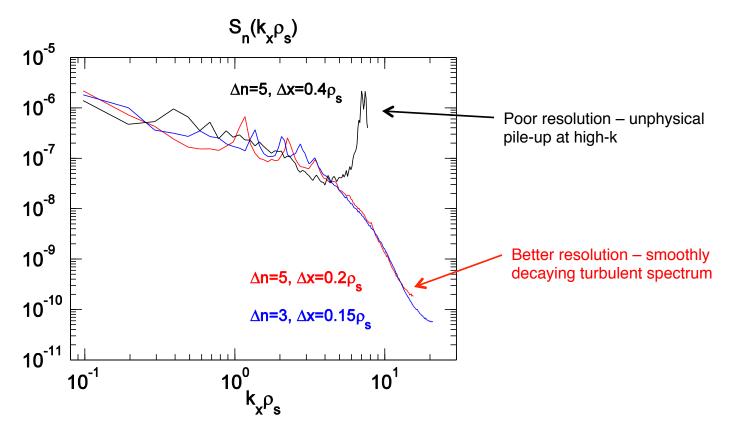
• Nonlinear simulations run for high- β_e , high- ν_e where only microtearing unstable

First nonlinear microtearing simulations in NSTX*

- Simulations where only microtearing unstable, no ETG (NSTX 120968, r/a=0.6)
 - Electromagnetic (ϕ , $A_{||}$) and collisional (v_e)
 - Varying E×B shear (mostly γ_F =0)
 - Deuterium only (but Z_{eff} in collision operator)
 - "Local" → no profile variation in equilibrium quantities
 - $k_{\theta} \rho_s = [0,0.105,0.21,...]$, same as n = [0,5,10,...]

$$\begin{aligned} & L_x \times L_y = 80 \times 60 \rho_s \\ & n_x \times n_y = 400 \times 8 \quad (\Delta x = 0.2 \ \rho_s) \\ & n_\theta = 14 \ (\text{parallel mesh points}) \\ & n_E = 8, \ n_\lambda = 12 \times 2 \ (\text{velocity space}) \end{aligned}$$

$\begin{array}{lll} \underline{120968 \text{ r/a=0.6 surface}} \\ a/L_{Te} = 2.73 & a/L_n = -0.83 \\ q=1.69 & s=1.75 \\ \kappa=1.7 & \delta=0.13 \\ T_e/T_i = 1.05 & Z_{eff} = 2.9 \\ \beta_e = 8.8\% & \nu_{ei} = 1.46 \ c_s/a \\ (\beta_{e.unit} = 2.5\%) \end{array}$


Acknowledgements: NERSC & OLCF (INCITE award FUS023)

^{*} W. Guttenfelder et al., Phys. Rev. Lett. 106, 155004 (2011)

Fine radial resolution required to obtain decaying nonlinear spectra

- Unphysical pile-up at high-k with insufficient resolution ($\Delta x=0.4 \rho_s$)
- Smoothly decaying turbulent spectrum with better resolution (Δx =0.2 ρ_s , Δx =0.15 ρ_s)

• Similar high-k pile-up observed in first careful attempts of GS2 MAST simulations – for more discussion see Applegate Ph. D. thesis (2007, Imperial College London)

Fine radial resolution required to distinguish *linear* resonant layers of fastest growing mode

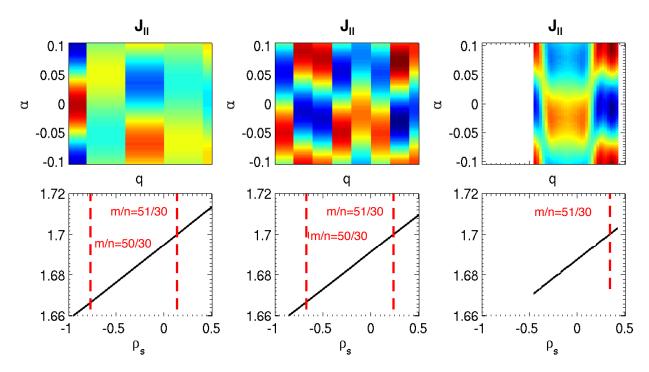
Linear calculation using box width and resolution of nonlinear simulations

"Typical" linear flux-tube calculation

$$L_x = 80 \rho_s = 88 \Delta r_{rat}$$

 $nx = 200$
 $\Delta x = 0.4 \rho_s$

$$L_x = 80 \rho_s = 88 \Delta r_{rat}$$

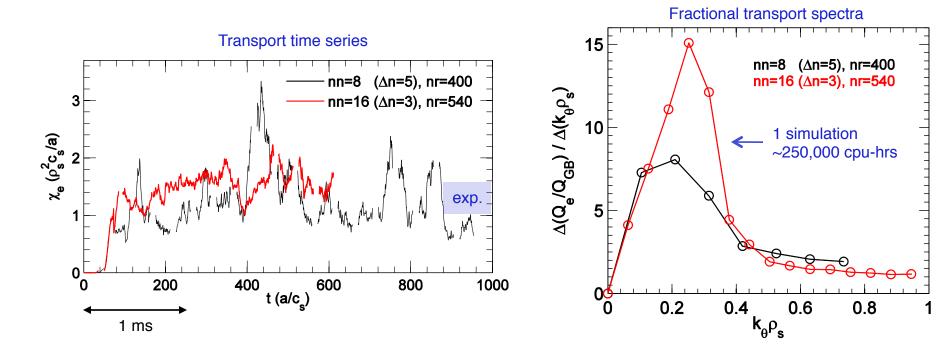

$$nx = 400$$

$$\Delta x = 0.2 \rho_s$$

$$L_x = 0.9 \rho_s = \Delta r_{rat}$$

$$nx = 32$$

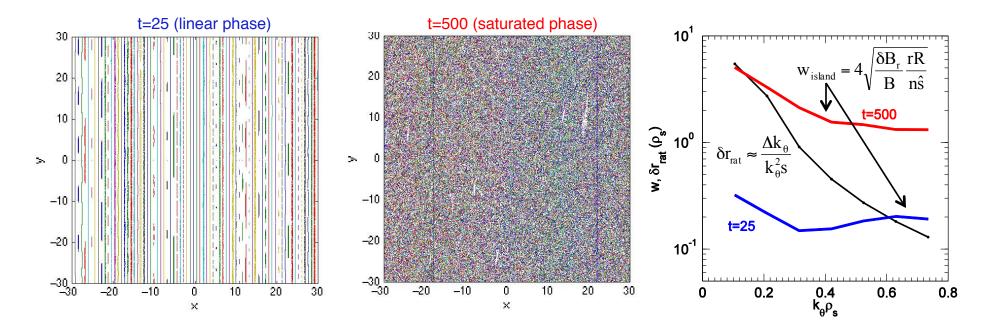
$$\Delta x = 0.03 \rho_s$$



Rough rule-of-thumb: $\Delta x \leq \min[\Delta r_{rat}]/4$

 $\Delta x/\rho_s \le 1/(4 \cdot max[k_0\rho_s] \cdot s)$

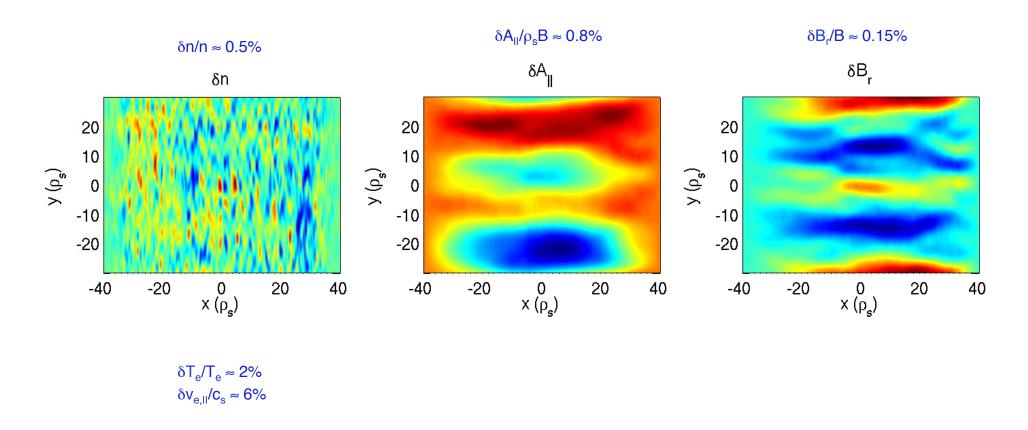
Predicted electron thermal transport comparable to experiment


- Simulated transport (1.2 $\rho_s^2 c_s/a$, 6 m²/s) comparable to experimental transport (1.0-1.6 $\rho_s^2 c_s/a$)
- Well defined peak in transport spectra ($k_{\theta}\rho_{s}\approx0.2$), downshifted from maximum γ_{lin} ($k_{\theta}\rho_{s}\approx0.6$)
- Slowly decaying tail predicted transport increases ~25% with higher resolution

Negligible particle, momentum, or ion thermal transport

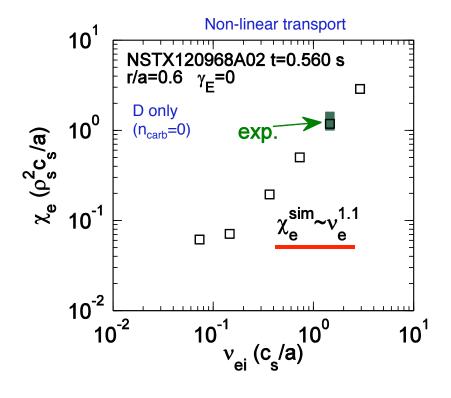
~98% of transport due to magnetic "flutter" contribution

- Flux surfaces become distorted in linear phase (t=25)
- Globally stochastic* in saturated phase, complete island overlap $w_{island}(n) > \delta r_{rat}(n)$


• $\chi_{e,EM}$ close to *collisionless* Rechester-Rosenbluth* (λ_{mfp} =12 m, L_c ≈2.5 m)

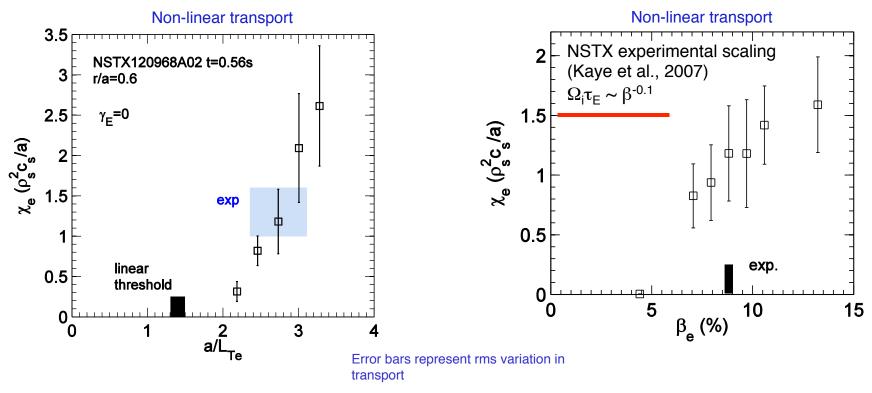
$$D_{st} = \lim_{s \to \infty} \frac{\left\langle \left[r_i(s) - r_i(0) \right]^2 \right\rangle}{2s} \qquad \qquad \chi^{RR} \approx 2 \left(\frac{2}{\pi} \right)^{1/2} D_{st} v_{Te} f_p \approx 0.9 \left(\frac{\rho_s^2 c_s}{a} \right) \qquad \qquad \qquad \\ f_{p} \approx 63\% \text{ passing particles}$$

^{*}Wang et al., Phys. Plasmas (2011); Nevins et al., Phys. Rev. Lett. (2011); Rechester & Rosenbluth, Phys. Rev. Lett. (1978); Harvey et al., Phys. Rev. Lett. (1981)


Narrow density perturbations remain in nonlinear simulations

- Narrow radial n, φ , j_{\parallel} structures need to be resolved but A_{\parallel} very broad
- $\delta B_r/B \sim 0.15\% \sim \rho_e/L_{Te} = 0.065\%$
- $\delta B_r/B \sim \rho_e/L_{Te}$ analytic approximation from Drake et al. PRL 1980; used for NSTX in Wong et al. PRL 2007

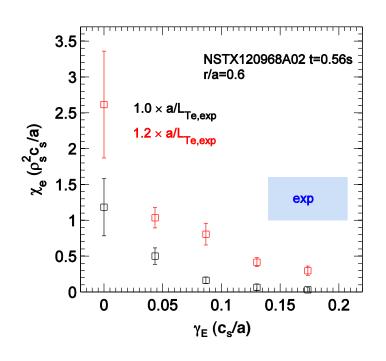
Near linear scaling of transport with v_e consistent with experimental scaling

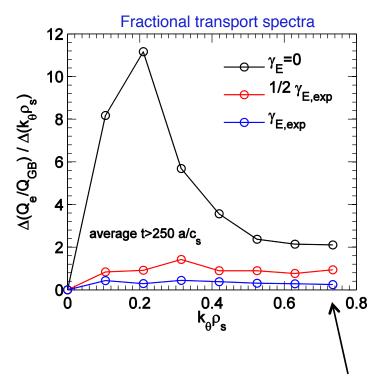


NSTX experimental scaling (Kaye et al., 2007) $\Omega_{\rm i}\tau_{\rm E} \sim \nu_*^{\text{-0.95}}$

- As transport drops, a/L_{Te} will increase (for fixed heat flux), at some point ETG (TEM?) should become important
- This transition likely to determine limit of "favorable" v_* scaling
- Also likely to depend on ionic charge (Z_{eff}) above with D only (n_c=0)

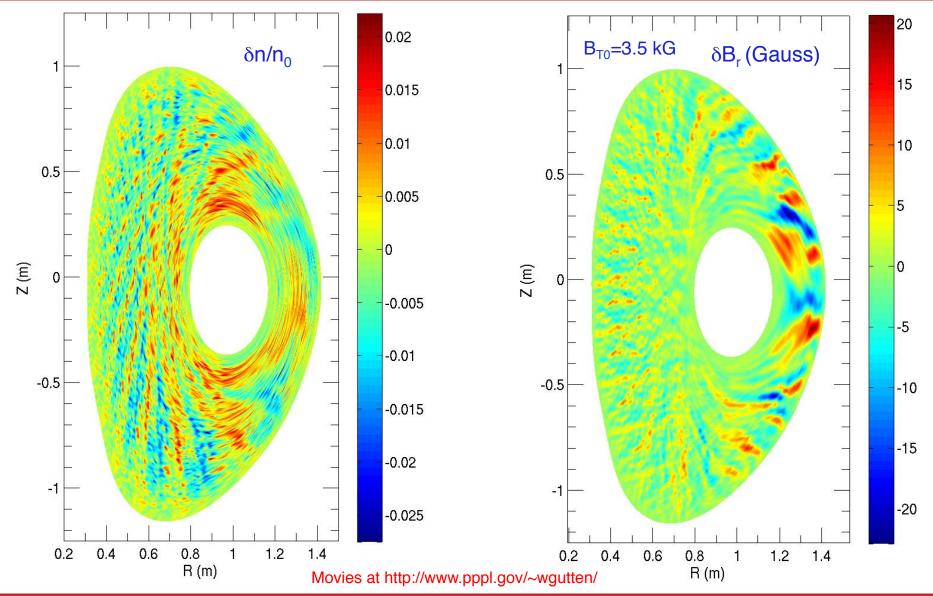
Predicted transport "stiff" with ∇T_e , increases with β_e

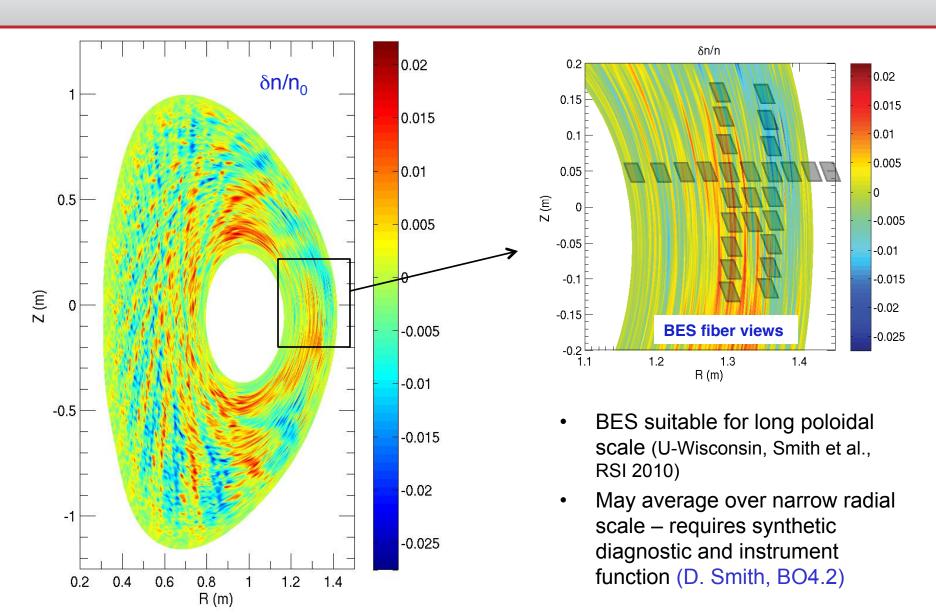

- Complicates simple interpretation from $\chi_{e,sim} \sim v_e^{1.1}$ scaling
- Useful to characterize scaling of threshold gradient (work in progress)



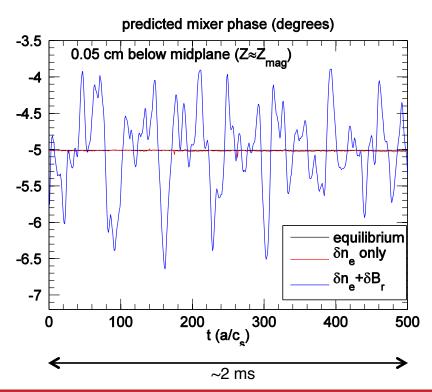
 Non-linear threshold ~40% bigger than linear threshold -- possible influence from limited numerical resolution

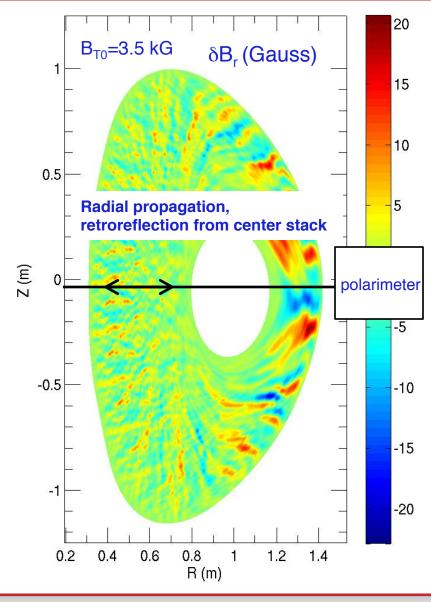
Nonlinear microtearing transport sensitive to γ_E/γ_{lin}


- Transport reduced when increasing γ_E to local experimental value ($\gamma_{E,exp} \sim \gamma_{lin,max} \sim 0.17 c_s/a$)
- Transport partially recovered with increase in ∇T_e


- Higher ionic charge (Z_{eff}>1, through adiabatic response) and improved resolution (binormal and radial) could increase transport
- Profile (non-local) effects could also matter ρ_s/a≈1/100 & edge more strongly driven

What hope is there to experimentally identify microtearing modes?


BES for density fluctuations



Polarimetry for magnetic field fluctuations

- New UCLA polarimetry system (J. Zhang, PP9.71)
- Simulations suggest (δB/B)_{internal} ≤0.1% may be detectable (1-2⁰ or ~0.3⁰ rms mixer phase)

Summary

- Microtearing modes found to be unstable in experimental v_∗ scans
 - Scaling of linear growth rates $\gamma_{lin} \sim \nu_e$ potential candidate to explain experimental confinement trend
 - Linear thresholds exist in a/L_{Te} & β_e
 - Ionic charge (Z_{eff}) can enhance instability (opposite to ETG expectations)
- First non-linear microtearing simulations in NSTX
 - − Require relatively fine radial resolution ($\Delta x \approx 0.2 \rho_s$, nx=400) to capture physics
 - − Transport dominated by electromagnetic contribution $(\delta A_{||})$ → stochastic field lines
 - Predicted $\chi_{e,sim} \sim v_e^{1.1}$ close to experimental scaling
 - "Stiff" with ∇T_e but suppressible by experimental levels of E×B shear

<u>Acknowledgements</u>

NERSC, OLCF, and support from DOE Contract No's: DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG03-95ER54309, DE-AC52-07NA27344, DE-FG02-99ER54527

