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Motivation: Understand mechanism(s) responsible for thermal, 

momentum, particle transport over broad range of parameters 

• Wide range of parameters accessible by spherical tokamaks (ST) 

• H-mode ion thermal transport often near neoclassical in STs 

• Observed confinement scaling WtE~n*
-0.8 [Kaye, IAEA 2012 EX/7-1] 

  does it extrapolate to future devices at lower n* (NSTX-U, ST-FNSF, …)? 

 

 

• Considering core thermal gradient micro-instabilities (r/a~0.4-0.8) 

– Local GYRO simulations based on experimental profiles & equilibrium 

reconstructions 

 

• Although important, not addressing: 

– Pedestal  [IAEA 2012: Canik (EX/P7-16), Diallo (EX/P4-04), Kubota (EX/P7-21), Maingi 

(EX/11-2), Smith (EX/P7-18)] 

– Energetic particle driven instabilities [IAEA 2012: Belova, TH/P6-16; Crocker, EX/P6-2] 
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Attempting to validate gyrokinetic simulations using NSTX 

experimental data 

• Comparing to experimental transport and sensitivity to parametric variations 

 

• Following simulations based on many NSTX discharges: 

– H-mode n* scaling experiments, without Lithium wall conditioning [Kaye NF 2007; IAEA 2012] 

– H-mode scan of Li-deposition for wall conditioning (will be referring to “pre-Li” and “post-Li”) [Maingi 

PRL 2011, IAEA 2012] 

– “Low beta” H-mode n* scaling [Ren PoP 2012] 
 

 

• Using Eulerian gyrokinetic code GYRO [1-3], almost all cases use: 
– Numerical equilibrium 

– Two ion species (D,C) 

– Fully electromagnetic perturbations (j, A||, B||) 

– Cases usually run without and with toroidal flow/flow shear (Ma~vTor, gP~dv||/dr, gE~d(Er)/dr) 
 

• All simulations are local  non-local/global effects (r*= rs/a~1/120, rs/L~1/50) 

almost certainly will change results quantitatively 
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[1] J. Candy, R.E. Waltz, J. Comput. Phys. 186, 545 (2003);  [2] J. Candy, E.A. Belli, General Atomics Report GA-A26818 (2010). 
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Broad range of parameters requires consideration of many 

micro-instabilities 

• “Electrostatic” ITG/TEM can be found at lower beta, often with gE~glin 

• ETG found for a/LTe>a/LTe,crit (high and low be) 

• Microtearing tearing (MT) found at sufficiently high be and nei 

• KBM unstable at high amhd ~b 
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Microtearing prevalent in older n* discharges (2006 data, 

without Li wall conditioning) 

• Color coding in plots: 3 high n*, 2 med n*, 2 low n* [Kaye NF 2007] 

• Microtearing dominates r/a=0.5-0.8; ETG almost entirely stable throughout (not shown) 

• At r/a=0.8 other ballooning modes (KBM) compete with MT (more later) 

•  glin,max/gE increases with r/a 
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Nonlinear microtearing (MT) simulations for high n* discharge 

predict large dBr and dominant magnetic flutter transport 

•  ce,em6 m2/s from dBr/B~0.15% (rms) 

– Measurable phase fluctuation predicted for proposed polarimetry diagnostic [J. Zhang, 2012] 

• Narrow density perturbations distinct from traditional ITG/TEM 
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W. Guttenfelder et al., Phys. Rev. Lett. (2011); Phys. Plasmas (2012). 

Lx,Ly   = 80,100 rs 

nx,ny = 540,16 

D only; j, A|| 

gE=0 

Resolution 

constrained by 

Drrat=1/kqs 

Dx0.2 rs 

 

Toroidal mode 

numbers: 

n5-40 

BT=3.5kG 
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MT transport increases with collisionality consistent with 

confinement scaling 

• Possible component of confinement scaling in NSTX (WtE~n*-0.8) 

• However, also suppressed by EB shear (gE,expglin,MT) 

 

 

 

 

 

 

 

 

 

 

 

• Scaling of MT transport with ne confirmed for different physical and numerical 

assumptions: addition of impurity species (C), periodic boundary condition, 

equilibrium pressure gradient, perpendicular resolution (all without EB shear) 
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Lx,Ly   = 80,60 rs 

nx,ny = 400,8 

D only; j, A|| 

Exp. range (r/a=0.6) 



NSTX-U Guttenfelder, APS-DPP 2012 

Microtearing transport also stiff with Te and be 

• Beta scaling not consistent with weak confinement scaling, WtE~b-0.1 [Kaye, 2007] 

• Useful to characterize threshold scaling for experimental interpretation and 

relating to MT as found conventional tokamaks [Doerk, PRL (2011), PoP (2012)] 

 

 

 

 

 

 

 

 

 

 

 

 Confinement scaling unlikely described by any individual theory parameter (e.g. 

ne, b, ...), requires transport modeling 
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Microtearing also unstable in “pre-Lithiated” shots from Li 

deposition scan (2008 data, Maingi PRL 2011, IAEA 2012) 

• Five similar discharges (129016-129020), MT strongest at r/a=0.6-0.7 

• Ballooning modes dominate at r/a=0.75-0.8 (different from 2006 data) 

• Very strong EB shear at r/a=0.6-0.7… 
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ETG strongly unstable at r/a=0.6-0.7 in “pre-Li” discharges 
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Nonlinear ETG transport significant in core of “pre-Li” 

discharges 

• Microtearing (and ballooning) instabilities at ion scales, but gE >> glin,ion 

• ETG nonlinear transport, Qe~1-2 MW (ce~10 re
2vTe/LTe) 

• Relatively stiff (a/LTe,crit~2.2) 
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Lx,Ly   = 6,2 rs 

nx,ny = 196,48 

D,C; j, A||,B|| 

Predicted ETG transport Linear growth rates 
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Multiple instabilities & profile variations (non-local effects at 

ri scales) important to theoretically describe entire discharge 

• Even over limited range of r/a=0.6-0.8, stability changes from ETG dominant (at re 

scales) to ballooning dominant (at ri scales) 

• Profile effects will matter for ion scales, ri/L~1/50 

• Ideally would use multi-scale, global simulations – too expensive computationally 
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Maximum linear growth rates (ion and 

electron scale) and EB shearing 

rates (averaged over 5 discharges) 
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Nonlinear ETG transport independent of ne, suppressed by 

n 

• Weak dependence follows linear 

stability (ne<<w) 

• Not consistent with confinement 

scaling, WtE~n*
-0.8 
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• Partially described by linear ETG threshold 

• n stabilization observed in reduction of 

high-k scattering intensity 

• Higher density gradient causes 

electrostatic TEM to be unstable 

Change in core (r/a0.6) density 

gradient before/after large ELM 
n* scaling experiment 

lower ne & PNBI  lower beta 

Y. Ren et al., Phys. Plasmas (2012); Phys. Rev. Lett. (2011).  

simulations simulations 

Qe,exp=1.7-2.2 MW 

Qe,exp=0.8-1.8 MW 
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Stiffness of ETG transport depends on n 

• Consider critical gradient model for ETG: 

 

 

 

 

 Little variation in rs
2cs/a1.4 m2/s 

 ~25% increase in effective threshold 

 Large a/Ln decreases ETG stiffness (F) 

 regardless of threshold 

 

 

• Strong correlation between Qe,ETG and a/Ln also found in low-b n*-scan discharges 

with apparent nonlinear threshold he=Ln/LTe~1.5-2.0 
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Different ion scale instabilities often overlap simultaneously 

• Low n* discharge with Lithium (129041 [Kaye, Maingi]) shows microtearing 

unstable but subdominant to ballooning mode (r/a=0.7) 

• Ballooning mode disappears in absence of compressional perturbations (B||) 

 

 

 

 

 

 

 

 

 

 

 
 

 

• What is the nature of these ion scale ballooning modes? 
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Ballooning mode scales like TEM, but very sensitive to beta 

like KBM 

• Destabilized by a/LTe, a/Ln, weakly dependent on a/LTi, stabilized by ne (like TEM) 

–  g ~ 1/ne scaling opposite to MT and confinement scaling 

• Growth rate scaling largely unified by amhd = -q2Rb,  

  expected for ideal/kinetic ballooning mode (KBM) 
 

 

 

 

 

 

 

 

 

 

 

 

• Similar behavior predicted in linear pedestal simulations [Canik, EX/P7-16] 
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Nonlinear TEM/KBM simulations predict significant transport, 

from both j and B|| perturbations 

• Significant transport in all channels (heat, particles), nearly half from dB||/B~0.08% 

• Spectra peak around kqrs~0.3, MT apparent early in A|| but does not survive 

 

 

 

 

 

 

 

 

 

 

 
 

• Including finite dV||/dr & VTor momentum transport (Pi,sim~0.3 Nm; Pi,exp~1-1.5 Nm) 

– May reconcile scenarios with anomalous ce, cj, near neoclassical ci [Kaye, NF (2009)] 

– However, significantly suppressed when also including EB shear 
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gE=0 
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Summary: Many turbulence mechanisms predicted over 

broad range of parameter space (especially b) 

(1) Nonlinear microtearing (MT) simulations predict significant electron 

transport from magnetic flutter (~Br) 

– g, ce ~ ne
+1 

– Stiff with be and a/LTe (suppressible by EB shear) 
 

(2) ETG predicts significant electron transport, in some scenarios 

– g, ce ~ ne
0 

– Stiffness depends on ne 
 

(3) TEM/KBM simulations predict large transport in all channels from j and B|| 

– g ~ ne
-1 

– Stiff with aMHD ~ b (suppressible by EB shear) 

 

 Unlikely that one mechanism or parameter can theoretically describe 

transport scaling  predictive modeling 
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