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Abstract

Understanding the pedestal structure is important for achieving high 
performance pedestals necessary for maximum core fusion gain in 
ITER and future next-step devices. The stability of the pedestal is 
characterized in high performance discharges in National Spherical 
Torus Experiment (NSTX). In addition, the spatial structure of 
turbulence present during an ELM cycle in the pedestal region 
indicates spatial scales k⊥!iped ranging from 0.2 to 0.7 propagating in 
the ion diamagnetic drift direction at the pedestal top. These 
propagating spatial scales are found to be poloidally elongated and 
consistent with ion-scale microturbulence. Linear gyrokinetic 
simulations using GENE indicate the presence of hybrid ITG/KBM-
TEM modes at the pedestal top. Nonlinear gyrokinetic simulations -- 
XGC1 -- find localized fluctuations agreeing with experimental level 
radial and poloidal correlation lengths.

This work is supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.
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Radial profiles of density, temperature and velocity are composite 
of times between multiple fraction of ELMs (e.g., 50-99% ELM cycle)
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Temperature pedestal height increases during the ELM cycle while 
the density pedestal shows no convincing trend

More than a factor 
of two increase in 
pedestal 
temperature

Density pedestal 
is much less 
sensitive to the 
ELM cycle

Heat and particle 
evolutions appear 
to be decoupled 
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Pedestal width and height progressively increase during ELM 
cycle but the peak pressure gradient remains clamped 

Pedestal height increases by a factor ! 3
– Height scales with Ip 
Pedestal width increases independently of Ip
Gradient is clamped early in ELM cycle
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Ideal ballooning stability is performed using “ball” module of GS2 during 
the last 50% of ELM cycle: Pedestal top is found to be ballooning unstable
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ELITE Peeling-ballooning mode stability 
diagram confirms that NSTX pedestal is kink-peeling unstable

Using the recent implementation of 
XGC0-bootstrap current model, the 
experimental point is in the kink/
peeling unstable region during the last 
part of the ELM cycle.
– The XGC0 current model is described 

in C-SChang TH/P4-12

– These results agree with previous 
NSTX stability analyses. 
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NSTX measured pedestal pressure width scales like (!!)" with exponent ranging 
from 0.8 to 1 consistent with (preliminary) predicted KBM-constrained pedestal 

In NSTX, the observed 
width is larger than 
conventional tokamaks
– NSTX pedestal width is 1.7 

and 2.4  larger than MAST and 
DIII-D & C-Mod respectively

Pedestal width scaling is 
consistent with predicted 
width for KBM constrained 
pedestal 
– “ballooning critical pedestal”-

BCP technique from EPED 
Model [Snyder Nucl. Fusion (2011)]

– Conventional tokamaks show 
an exponent of 0.5.
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Poloidal Structure Characterization using BES

9
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BES yields characterization of density fluctuations the 
density pedestal top 
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Modest change in poloidal correlation length during the inter-ELM phase
– Poloidal correlation length corresponds to toroidal mode number (rk!/q) n = 2 - 3
Measurements show ion scale fluctuation in the pedestal top
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BES provides measurements of the poloidal correlation length and 
poloidal velocity
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Both BES and reflectometry systems show similar broadband 
power spectra 

Fluctuations at the pedestal top during ELM cycle are broadband as 
indicated by both reflectometry and BES system
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Radial Structure Characterization using 
Correlation Reflectometry

13
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Radial density correlation lengths at the pedestal top and  
steep gradient region

The density fluctuations are 
measured using a 16-channel 
O-mode reflectometer

Using two-point correlation the 
radial correlation function is 
determined.
- tracks the equilibrium plasma 

motion
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2D full wave simulation of correlation function inside 
pedestal region reproduces measurements
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Reflectometry:Radial correlation length evolution depends on location 
inside pedestal region(steep gradient and pedestal top) 

Radial correlation length 
increases at the pedestal 
top
• A factor of 2 increase during 

the last 50% of ELM cycle
• Increase size of eddies

!suggesting enhanced 
radial transport during the 
ELM cycle

Steep gradient correlation 
length is unchanged 

Caveat: quantify the 
geometric effects on the 
measured correlation.
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Evolution of the radial displacement power spectra indicates an 
increase of the fluctuation level during the last 40% of ELM cycle
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Evolution of the radial displacement power spectra indicates an 
increase of the fluctuation level during the last 40% of ELM cycle
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The gyrokinetic code GENE
GENE is a physically comprehensive Vlasov code which
– allows for kinetic electrons electromagnetic fluctuations, collisions, and external 

ExB shear flows

– is coupled to various MHD 
and transport codes

– can be used as initial 
value or eigenvalue solver

– supports local (flux-tube) and 
global (full-torus), gradient- 
and flux-driven simulations

– well benchmarked and hyperscalable
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see: gene.rzg.mpg.de
        and F. Jenko’s talk

Temperature fluctuations of a 
global GENE simulation for 

ASDEX-Upgrade
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Linear simulations using GENE at the pedestal top indicate presence of 
KBM-TEM hybrid modes along with microtearing modes (80 - 99% ELM)

The characteristic scales of these instabilities appear to be consistent 
with experimental scales determined with BES system
TEM modes are “hybridized” with KBM as identified by the ! scan
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Summary/Future work 

Continuous increase of the electron temperature and much less variation in electron density and 
pressure build up and at time saturation prior to the ELM onset
– Pressure gradient, however, is clamped during most of the ELM cycle
– NSTX exhibits wider pedestal widths than conventional tokamaks
– Pedestal width scaling like ("")0.8 in agreement with predicted KBM-constrained pedestal
Pedestal stability are performed using MHD codes
– NSTX pedestal during the last 50% of the ELM cycle is found to be kink-peeling unstable

• Calculations were performed using ELITE code
– Using “ball” a module of GS2, pedestal top is found to be unstable to ideal high-n-ballooning 

modes 
Characterization of the fluctuations during the inter-ELM phase
– BES and reflectometry confirm ion scale turbulence 0.2 !  k⊥#i  ! 0.7 
– Poloidal correlation is larger than radial correlation length
Linear GENE simulation also show the presence dominant hybrid ITG/KBM-TEM modes at the 
pedestal top with subdominant microtearing.

XGC1 preliminary simulation results: correlation lengths agree with experimental observations
• Most unstable mode is ITG in simulation: study will be extended to full-f nonlinear XGC1 simulation

Extend the simulation to full-f mode using XGC1 and account for measured flows and add collisions.
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Preliminary future work

21



Comprehensive gyrokinetic code

Diverted magnetic field geometry with material wall boundary condition
– Includes magnetic axis: wall to wall simulation
 Wall recycling of neutral particle with atomic physics

Particle-momentum-energy conserving collision operator

Multiscale simulation of neoclassical, turbulence, neutral particle,and 
atomic physics
– Present XGC1 capability: 

• ITG + neoclassical + neutral in diverted geometry 
• E&M turbulence in non-diverted geometry
• Soon to come:ITG-TEM + neoclassical + neutrals in separatrix geometry

 A.Diallo - APS-DPP 2012NSTX-U

Simulating the Edge Turbulence during ELM cycle using XGC1

22
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Nonlinear simulations using XGC1 are performed for cases during 
the last part of the ELM cycle

"f mode in XGC1
– 200 x 60 spatial grid
– simulation box up to #n ~ 0.95 to 

include the unstable region
– Using experimental profiles

Collisions and flows are not 
included in this simulation
–  Adiabatic electrons
– Only ITG exists
Probing the fully nonlinear phase 
of the simulations
Characteristic poloidal structures 
propagating in the ion 
diamagnetic direction. 
– ITG resides at the pedestal top, but 

nonlinearly and nonlocally penetrated into 
the pedestal region.

– Sampling a region encompassing both 
BES and the reflectometer measurements
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Nonlinear simulations using XGC1 are performed for cases during 
the last part of the ELM cycle

"f mode in XGC1
– 200 x 60 spatial grid
– simulation box up to #n ~ 0.95 to 

include the unstable region
– Using experimental profiles

Collisions and flows are not 
included in this simulation
–  Adiabatic electrons
– Only ITG exists
Probing the fully nonlinear phase 
of the simulations
Characteristic poloidal structures 
propagating in the ion 
diamagnetic direction. 
– ITG resides at the pedestal top, but 

nonlinearly and nonlocally penetrated into 
the pedestal region.

– Sampling a region encompassing both 
BES and the reflectometer measurements
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Nonlinear simulations using XGC1 are performed for cases during 
the last part of the ELM cycle

"f mode in XGC1
– 200 x 60 spatial grid
– simulation box up to #n ~ 0.95 

to include the unstable region
– Using experimental profiles

Collisions and flows are not 
included in this simulation
–  Adiabatic electrons
Probing the fully nonlinear 
phase of the simulations
Characteristic poloidal 
structures propagating in 
the ion diamagnetic 
direction. 
– ITG resides at the pedestal top, 

but nonlinearly and nonlocally 
penetrated into the pedestal 
region.

– Sampling a region encompassing 
both BES and the reflectometer 
measurements

24
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Nonlinear simulations using XGC1 are performed for cases during 
the last part of the ELM cycle

"f mode in XGC1
– 200 x 60 spatial grid
– simulation box up to #n ~ 0.95 

to include the unstable region
– Using experimental profiles

Collisions and flows are not 
included in this simulation
–  Adiabatic electrons
Probing the fully nonlinear 
phase of the simulations
Characteristic poloidal 
structures propagating in 
the ion diamagnetic 
direction. 
– ITG resides at the pedestal top, 

but nonlinearly and nonlocally 
penetrated into the pedestal 
region.

– Sampling a region encompassing 
both BES and the reflectometer 
measurements
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Simulations from XGC1 indicate localized fluctuations with 
broadband power spectra   
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Nonlinear simulations from XGC1 show localized fluctuations with 
experimental level radial and poloidal correlation lengths   
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