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Overview

« Dirift-kinetic effects have previously been included in RWM
stability analysis for NSTX (see papers by Berkery, Sabbagh, Menard)

» In this work, we briefly review result that RWM stability is sensitive
function of edge rotation, and is consistent with MARS-F analysis

» We then investigate how RWM eigenfunctions are modified by
rotation and dissipation using MARS-K

» Not previously documented for ST plasmas
» Could impact ‘perturbative’ approach employed by codes such as MISK

« Drift-kinetic stability analyses have not previously been
carried out for ideal-wall limit, aka the ‘plasma mode’

» Work here investigates impact of rotation, rotation shear, and kinetic
damping on ‘plasma mode’ stability and eigenfunctions
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Error field correction (EFC) often necessary to maintain
rotation, stabilize n=1 resistive wall mode (RWM) at high B,

*No EFC = n=1 RWM unstable
* With EFC - n=1 RWM stable
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Analysis of experiment uses MARS: linear MHD stability
code that includes toroidal rotation and drift-kinetic effects

» Single-fluid linear MHD » Kinetic effects in perturbed p:
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 Fastions: MARS-K: slowing-down f(v), MARS-F: lumped with thermal

NSTX-U 2012 APS Meeting — ST stability — J. Menard 4



MARS-F: Inclusion of @.- In @ Increases separation between
stable and unstable wc(y), provides consistency w/ expt.

Toroidal rotation only
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MARS-K studies of RWM eigenfunction:
Dissipation alone can modify RWM eigenfunctions (1)

« 4% of full kinetic damping can reduce eigenfunction amplitude
by 25-50% at large minor radii

mg(0)t, = 0.0, NSTX wall with /1, = 10° mg(0)t, = 0.0, NSTX wall with 7 /t, = 10°
m=1 Damping fraction o, = 0.0 (solid), 0.01 (dashed) m=1 Damping fraction oy = 0.0 (solid), 0.04 (dashed)
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NOTE: collisions are included in this and subsequent calculations with
energy independent collisionality with slowing-down v evaluated at E=5/2 T
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MARS-K studies of RWM eigenfunction:
Dissipation alone can modify RWM eigenfunctions (2)

« Full kinetic damping can produce large changes in eigenmode
structure near mode rational surfaces, and in edge region

mg(0)t, = 0.0, NSTX wall with /1, = 10° NSTX wall with t,_/t, = 10°
Damping fraction o, = 0.0 (solid), 0.04 (dashed) m= Solid, dashed: 0, =0,1 ®g(0)t, =0, 0.00
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Rotation (with weak dissipation) can
also modify RWM eigenfunctions

=+ Only small eigenfunction changes observed for mg(0)t, = 0.04

* Resonances appear on both sides of g=2 surface for mg(0)t, = 0.1
— Alfvén singular points apparently split by Doppler shift

\/ NSTX wall with <, /1, = 10° NSTX wall with| 1, /1, = 10°
m=1 Solid, dashed: o, = 0.04 ®(0)r, = 0.00, 0.04 m=1 Solid, dashed: o, = 0. ®g(0)t, = 0.00, 0.10
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As rotation (with weak dissipation) increases toward
experimental value, RWM eigenfunction is strongly modified

= « Eigenfunction amplitude decreased by 25-50% at
large minor radius for wg(0)t, = 0.14

* Eigenfunction strongly modified for og(0)t, = 0.16
—Rotation approaching marginal stability (og(0)t, = 0.22)

\/ NSTX wall with /1, = 10° NSTX wall with /7, = 10°
m=; Solid, dashed: o, = 0.04 ©¢(0)r, = 0.00, 0.14 m=; Solid, dashed: o, = 0.04 (0)t, = 0.00, 0.16
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Rotation + dissipation strongly modifies RWM eigenfunctions

« Rotation added to full kinetic damping produces changes that
deviate significantly from cases w/o rotation or dissipation

NSTX wall with /1, = 10°
Solid, dashed: 05 = 0,1 ©g(0)t, =0, 0.1

NSTX wall with /1, = 10°
Solid, dashed: 0, =0,1 ©g(0)t, = 0, 0.00
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Toroidal rotation also modifies with-wall eigenfunction

« With wall present, eigenfunction modified in both core and edge
* Note — this is ‘plasma mode’ with o, ~ rotation frequency

.. . Experimental

Ideal plasma, zero dissipation value

Ideal wall at zero rotation marginal position Ideal wall at zero rotation marginal pos ‘

m=; Solid: ©g(0)t, = 0.0, Dashed: wg(0)t, = 0.1 m=:|_2 Solid: w(0)t, = 0.0, Dashed: »:(0)t, = 0.2
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Increased toroidal rotation reduces ‘plasma mode’ stability

Implication:

‘ideal-wall limit’ is function of rotation speed

» Plasma mode predicted to be unstable for NSTX wall and rotation, but
experiment does not exhibit this fast rotating instability at this time

| Experimentally unstable ‘

Growth rate vs rotatlon and waII p05|t|on
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Higher-resolution rotation scan finds ideal ‘plasma mode’
marginally stability at ~50-60% of experimental rotation

* Ideal NSTX plasma: B, = 5.1, wall positionr,,,/a~ 1.25
— Low rotation - marginal r,,,, / a ~ 1.65, corresponding marginal 3 ~ 6.
— As og(0)t,~> 0.1-0.12 (no dissipation), n=1 becomes unstable
— For ©g(0) T4 ~ 0.2-0.3, n=1 mode is unstable even with the wall on the plasma boundary

 Mode apparently mix of pressure-driven kink + Kelvin-Helmholtz
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Increased rotation shear in plasma core is destabilizing
(consistent with expectation for Kelvin-Helmholtz)

» Rotation variations in edge region change y very little
— Compare experiment and modified ‘positive-definite’ profiles below

* yindependent of shear for ‘medium’ and ‘high’ shear cases
(indicates saturation of shear effects) @

Rotation and q profiles
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However, increased rotation shear In
plasma edge region can be stabilizing

« For near-edge rotation shear, both the shear magnitude and
the wall position influence the mode growth rate

* ‘high’ edge-shear case is nearly stable at experimentalr,, / a
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Plasma mode destabilization by rotation/rotation shear is
still predicted when parallel sound-wave damping is included

* For largerr,,, / a, parallel damping systematically increases growth rate
* For smallerr,,, / a, growth rate can be reduced relative to ideal case

L PVISC = 1 (dashed)

15 - PVISC = 0 (solid) 11 Sound wave damping model:
. VI, = 1 w2 [Ky Vil pv4-bb
02 P : «, = Damping strength

10 K, = 1 = classic ion Landau damping
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(Perpendicular) kinetic damping can stabilize ‘plasma mode’
over a wider range of rotation, but only at reduced r,,,, / a

Kinetic damping from drift * Mode vy generally red_uced
precession resonance included for large r,,, / @ relative to
10 T ] Ideal plasma predictions
12} 5o, 1 «Mode can remain stable for
_ 10| 016 ] high og(0)t, at smallr,,,, / a
2 gl oo |
< 60_04 i /”’W At sufficiently high og(0)t,
>~ O ! ; ~ 0.3, plasma unstable
4| v - evenforr,, /a=1
21 ﬂ/ SECHT) —j
| | (Expt Q4(0) 5 ~ 0.22) | ]

Results imply both rotation and
dissipation influence ideal-wall
stability limit (plasma mode)
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Inclusion of all resonances (precession, passing, trapped)
required to stabilize ‘plasma mode’ at experimental B, o,

I mt::;’;ir‘f;(o)’“"o'z ] « Including precession and
8 - Precession precession + trapped
 Precession + trapped | resonances increases v

" Precession + passing

for By values >4

* Inclusion of passing
particles essential for
reducing growth rate

Y Ta [%]

 Stability up to B ~ 6 only
accessed by including
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Damping fraction threshold for accessing no-rotation
with-wall limit of B, ~ 6 Is 30-60% of full kinetic damping

0 - Damping:

 Rotation: mg(0)1, = 0.2
8- : :
- Damping fraction o:
- 0.00
- 0.01
6 0.10
- 0.30

Y Ta [%]

precession + passing + trapped

Stronger damping
near experimental
value provides
stabilization to high B

Weaker damping insufficient to overcome
destabilization from rotation/rotation shear
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Summary

« Edge rotation (g > 4, r/a > 0.8) important for NSTX RWM
— Trends consistent with stability calculations using MARS-F

« RWM eigenfunctions are modified by dissipation, rotation
— Reduction/modification of &, will modify kinetic stabilization

« |[deal-wall limit (‘plasma mode’) modified by rotation, dissipation

— With no dissipation, plasma is predicted to be unstable at rotation %z the
experimental value, but no instabllity is observed in experiment

— Rotation shear can be stabilizing or destabilizing, depending on where the
maximum shear is located in minor radius

— Parallel (SW) damping destabilizing/stabilizing at large/small r,, / a
— Inclusion of full kinetic damping stabilizes plasma mode at high rotation, 3
— Passing resonances appear most important for plasma mode stability

— Next-steps: Compare experimental mode frequencies and eigenfunctions
to predicted values including rotation and full kinetic resonant effects
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