Supported by

Characterization of Disruption Halo Currents in NSTX

NSTX-U

S.P. Gerhardt

A.H. Boozer, J. Breslau, E. Fredrickson, S. Jardin, R. Kaita, J. Manickam, J. Menard, S. Sabbagh, F. Scotti, H. Takahashi and the NSTX Research Team

APS DPP Rhode Island 10/31/2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT **FOM Inst DIFFER** ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR. Czech Rep

Overview of 2010/2011 NSTX Halo Current Instrumentation (Color Coded)

Entrance Point Currents Row-3 Tiles (OBDLR3) Row-4 Tiles (OBDLR4) LLD Ground Rogowskis (they worked, but ground faults on LLD rendered measurements questionable)

<u>Structure Currents</u> Inner Ring B_T Detectors (OBDIR, one circled) Outer Ring B_T Detectors (OBDOR, not in picture) CSC Rogowski, Lower #2 (CSCL2) CSC Rogoswki, Lower #1 (CSCL1, Segmented) CSC Rogowski, Upper #1 (CSCU1) Current in Connections Bridging CHI Gap (CTCHILP)

Example n=0 Current Dynamics for Downward VDE Landing on Outboad Divertor

Col. #1, 3

Current Increase on Previous Slide Corresponds to "Arcing" Across the CHI Gap

- CHI gap is a toroidal insulator, used to provide electrical isolation (poloidal break) between inner and outer vessels.
 - Usually connected by a long (many meters) bus work connection.
- Increase in vessel current corresponds to plasma forming in gap:
 - t=189.56 ms: gap is still dark
 - t=190.56 ms: gap begins to show light
 - t=191.56 ms: gap is completely full of plasma
- Once arc forms, there is a large drop in the currents in bus work connecting inner and outer vessels.
 - That connection is shorted out by the arc plasma

2001 APS-DPP, Disruption Halo Currents in NSTX, Gerhardt, et al. (10/31/2012)

Halo Current Fractions and Toroidal Peaking Factors Calculated for All Detector Arrays

- Generally follow trend of reduced peaking at higher amplitude.
- These local halo current fractions should not be compared to "total" halo current fractions as often plotted for the ITER design basis.

Halo Currents at Entrance Points Are Strongly Non-Axisymmetric

- Measurements from the array of instrumented tiles (OBDLR3)
 - Same poloidal angle
 - Distributed toroidally
- Infer strong toroidal asymmetry, often with significant rotation, at locations where currents enter the divertor floor.

Rotation Dynamics of Example Landing on the Outboard Divertor Floor

Col. #2, 7

Rotation Dynamics of Example Landing on the Secondary Passive Plates

Col. #2, 8

Further Examples of Halo Current Rotation Dynamics

Key Observations

Dominant structure is typically a toroidally-rotating lobe. Rotation is typically in the counter-direction, except for short bursts.

Use a Model Fit Function To Better Resolve the Halo Current Dynamics

- Observed structure is a toroidally localized lobe.
- Apply a fit function with
 - DC offset (f_0)
 - lobe of variable toroidal width (f_4) and amplitude (f_1)
 - Explicit rotation frequency (f₃)
- Divide data into δt~0.1 ms width windows, and fit data from all six tiles during each window.
 - Fitting windows allows the features to rotate over the tiles during periods of fits.
- Also did an "instantaneous" version of fit with no f₃ term, fits at each time sample.
 - These in red on next slide.

Dominant Structure of the Halo Current is a Rotating Toroidally Localized Lobe of Current

Fits Reveal Dynamics of the Halo Currents (Case With Steady Rotation in Slides 7 and 11)

Fits Reveal Dynamics of the Halo Currents (Case With Erratic Rotation on Right of Slide 9)

of Rotations is Observed to Scale Inversely with Halo Current Magnitude

- Compute the rotation dynamics during time when n=1 halo current is >25% of its maximum.
- Compare to the time average of the maximum halo current magnitude.
 - Rotation frequency usually lower at high amplitude.
 - Pulse duration usually lower at high amplitude
 - Total # of rotations drops at high amplitude

n=1 Fields Did Not Modify HC Rotation **During Deliberate VDEs**

1.00

0.75

0.50 0.25

0.00

-0.4

-0.8 -1.0 **50.0**

37.5

0.2 d) 0.0 d)

e)

I_P [MA]

_{axis} [m] -0.2

 ${\sf Z}_{\sf mag.}$ -0.6 C)

- Deliberate VDE are prone to very large halo • currents, few toroidal revolutions.
 - Shots with no n=1 fields (140444 and 140452) shows zero and a single rotation.
- Shots with large n=1 applied field showed • between 0 and 1.5 asymmetry revolutions.
 - 140453: 0.8 kA n=1, ~1.25 revolutions.
 - 140454: 1.6 kA n=1, ~1.5 revolutions, with an apparent locked mode!
 - 140455: 1.2 kA n=1, ~1.5 revolutions.

Dynamics of the **Disrupting Phase**

140444 140452 140453 140454 140455

Statistical Analysis Shows Less Rotation in Cases With Strong n=1 Fields

- Large n=1 fields are often applied by the RWM control system during a disruption. Due to:
 - Actual 3D distortions of the plasma
 - Toroidal & non-axisymmetric eddy currents leading to incorrectly identified "modes".
 - On-line doesn't have v_{loop} sensor compensationsas in the off-line analysis.
- Result of database study:
 - Rotation frequency tends to be smaller when the n=1 field is higher.
 - No effect on the pulse duration
 - Reduced # of toroidal revolutions with large 1 fields

2001 APS-DPP, Disruption Halo Currents in NSTX, Gerhardt, et al. (10/31/2012)

Halo Currents Become Symmeterized In the Final Phase of the Disruption: Example on OBD

Halo Currents Become Symmeterized In the Final Phase of the Disruption: Example on Secondary Passive Plate

2001 APS-DPP, Disruption Halo Currents in NSTX, Gerhardt, et al. (10/31/2012)

- Currents can "arc" across gaps in PFCs and structural elements.
 - The actual halo current path may not be knowable in advance.
- The dominant structure of the halo currents is a rotating, toroidally localized lobe of current.
 - Can be significantly more peaked than a simple n=1 variation.
- Up to eight total revolutions of the toroidal asymmetry have been observed.
 - # of revolutions tends to be small for the cases with largest currents.
- Story with regard to n=1 fields is mixed:
 - In large J_{HC} VDEs, applied n=1 fields to not impact the toroidal rotation.
 - In a large database, there were no observed cases with both many toroidal revolutions and large n=1 fields.

NSTX Disruption References

- S.P. Gerhardt, et al. "Characterization of the Plasma Current Quench During Disruptions in the National Spherical Torus Experiment", Nuclear Fusion **49**, 025005.
- S.P. Gerhardt, et al. "Characterization of Disruption Halo Currents in the National Spherical Torus Experiment", Nuclear Fusion 52, 063005
- S.P. Gerhardt, et al. "*Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX*", submitted to Nuclear Fusion.
- S.P. Gerhardt, et al. "Disruptions, Disruptivity, and Safer Operating Windows in the High-β Spherical Torus NSTX", submitted to Nuclear Fusion.
- S.P. Gerhardt, et al. "Disruptions in the High-β Spherical Torus NSTX", IAEA-FEC 2012, EX/9-3

