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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

TAEs and avalanches 

•  Toroidal Alfvén eigenmodes (TAEs) are weakly damped 
Alfvén waves in a toroidal plasma, often driven by ions 
whose velocity approaches the Alfvén velocity (or a fraction  
thereof) 

•  A burst in which several TAEs of differing n occur is termed 
an avalanche; these produce drops in the neutron rate 
and, often,  losses of beam 

•  Energetic particle bursts have characteristics similar to 
avalanches, and are seen repeatedly during Ip ramp up 

•  Beam ion losses during both types of bursts can change the 
total beam driven current and its profile 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Typical avalanche in NSTX shows multiple n on Mirnovs 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Avalanches can cause drop in neutron rate and sometimes 
burst of loss 

•  But, loss is not 
observed with 
every avalanche 

•  Pitch angle 
distributions of loss 
during avalanches 
sometimes differ 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Goal: Use computed effects of bursts on beam ion 
distribution to model effects on current profile 

•  Beam ion distribution modeled by guiding center orbit code 
that incorporates:  
–  Measured TAE n numbers, frequencies (Mirnov coils) 
–  Radial mode structures and amplitudes (multichannel 

microwave reflectometer data coupled to NOVA-K calculations 
of eigenmodes) 

–  Deposited beam ion distribution function from TRANSP 
–  Focus on recently deposited beam ions since losses appear at 

or very close to injection energy of 90 keV 
•  Prior work has successfully used this approach to model 

drops in the neutron rate and beam ion loss distribution 
•  Present work seeks to extend modeling results to J(r) profile 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Study single, well-documented avalanche as first case 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Any avalanche induced beam ion loss is measured with 
scintillator probe 
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Beam ion 
orbit

Scintillator probe: 
Combination of aperture 
geometry & B acts as magnetic 
spectrometer 
Fast video camera captures 
luminosity pattern on scintillator 
as function of time 
Γloss(ρ, χ, t)

NSTX probe: 
5 cm ≤ ρ ≤60 cm 
15° ≤ χ ≤ 80° 



TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Avalanche has multiple n, and loss evolves rapidly during 
event 

•  blah 
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• Scintillator image 
sequence during 
avalanche

• This avalanche also 
produces 17% drop in 
neutron rate 
• Loss occurs over 
interval of only 100 µs, 
corresponding to a few 
tens of toroidal transits 
of beam ions
• Passing and trapped 
ions lost simultaneously, 
over range of pitch 
angles

δB spectro-
gram

δBrms

Sn

Γloss



TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

60° pitch angle loss appears first, then range of lower pitch 
angles 

•  Rapid appearance of wide pitch angle spot (18°–40°) in    
33 µs (≤10 toroidal transits) indicates transport of fast ions 
is very strong during avalanche 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

For modeling ion orbits, use NOVA-K TAE radial 
eigenfunctions fit  to reflectometer fluctuation profiles 

•  Density 
fluctuation 
or displace-
ment can be 
matched, 
giving 
absolute 
amplitudes 
of various n 
modes for 
input into 
orbit 
following 
code 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Beam ion orbits can be completely characterized by 3 
constants of the motion 

•  E = ½ mv2 (kinetic energy) 
–  Conserved on time scales short compared to collisional slowing down 

time; also roughly conserved in avalanche losses as these ions lost at 
injection energy 

•  µ = ½ mvperp
2/B (magnetic moment) 

–  Conserved in the absence of fields varying near the particle’s cyclotron 
frequency or field gradients shorter than length ρi 

•  Pφ =mvφR+qψpol (canonical angular momentum) (a.k.a. Pζ) 
–  Conserved in axisymmetry (i.e. in absence of nonaxisymmetric MHD or 

error field correction coil fields) 

•  Conservation conditions usually satisfied in NSTX 
•  Knowledge of these 3 parameters fully determines orbit 

(except toroidal position, φ, and gyromotion, which are not 
used in this work) 

•  This approach equivalent to guiding center orbit following 
11 



TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Deposited full energy beam distribution can be represented 
in (µ, Pφ) space, along with certain phase space boundaries 

Guiding centers 
on magnetic axis

Loss boundary
(co-going passing 
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orbits reach outer 
midplane)Guiding 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Modes transport beam ions radially, some to loss boundary 

•  Observed MHD frequencies <<Ωci, so µ will be conserved 
•  Mode destroys toroidal symmetry, so Pφ no longer constant 
•  A single n mode moves particles along a line nE-ωPφ=const 

in diffusive fashion, at fixed µ 
•  Multiple n in avalanche can cause broader transport 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Mode structures and amplitudes can be used to determine 
regions of phase space subject to stochasticity 

•  Use guiding center code ORBIT to follow nearby pairs of ions 
for multiple toroidal transits, then create Poincaré plots 

•  If “phase vector” between particles in action/angle space 
rotates by more than π, then that region of phase space is 
stochastic 

•  Repeat process for many particle pairs, spanning phase space, 
and shade volumes of phase space in plot to designate 
stochastic domains 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Test whether code-modeled stochastic domain presence 
coincides with lost pitch angle ranges 

•  Stochastic maps shown on following slides for several pitch 
angles marked below 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Case a (23°) is near center of a detected loss spot & model 
predicts loss 

•  Beam ions 
deposited in 
stochastic region 

•  Particles move 
along orange line 
(or parallel lines) 
under influence of 
n=2 mode 

•  Particles clearly 
deposited in 
stochastic region 
and that region 
extends to loss 
boundary 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Case c (43°) is in region of no loss; deposition evident only in 
region with good surfaces 

•  Model consistent 
with observation at 
this pitch angle 

•  Slopes of lines of 
diffusion for n=3 & 4 
also shown–they do 
not differ markedly 
from direction of 
transport for n=2 
mode 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Orbit following including mode structure shows bimodal loss 
distribution in pitch angle, as observed 

•  Modeled loss 
boundaries agree with 
measurement at top 
and bottom of range, 
but not at intermediate 
values 

•  Same simulation for 
no loss case shows 
very few particles 
reach detector 

•  Note also that detector 
loss is representative of 
all losses 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Modeled loss flux vs pitch angle differs from experiment 

•  Model, while predicting 2 
peaks at detector, does 
not reproduce observed 
variation of loss flux with 
pitch angle 

Measured Model:
total loss

Model:
detector

[pitch angle]



TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Beam ion data from calculation can be used to model mode 
effect on beam driven current 

•  Since modes can affect the beam ion velocities and 
positions, in addition to causing loss, they can alter the beam 
driven current profile 

•  Compute model J||(ψ) as Σnqv|| for all beam ions in a given 
annulus in ψ

•  Compare profile before and after avalanche 
•  Model does not yet include screening of ions by electrons 



TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Modeled beam-driven J||(ψ) profiles show drop near center, 
increase at mid-radii after avalanche 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Equilibrium fits suggest opposite: small increase in central 
current density after avalanche 

•  J|| profiles from MSE-constrained LRDFITs before and after 
avalanche shown 

•  Differences well within errors of fit 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Summary 

•  TAE avalanches in NSTX plasmas can redistribute and expel 
neutral beam ions 

•  Representative case has been modeled extensively with 
ORBIT code to compute beam ion losses, with fair agreement 
between model and loss observations 

•  Use of same model shows redistribution of beam driven 
current from center of plasma to mid-radii, but no significant 
change of current profile is seen in equilibrium fits 

•  Related EPM bursts seen during plasma current ramp up 
•  Seek to validate computation of ΔJ||(r) with avalanches and 

apply to EPM bursts 
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TAE and EPM burst effects on beam ions in NSTX-Darrow, APS-DPP, Providence, RI,  (10/30-11/2/2012)

Future work 

•  Try newly-developed method of transferring eigenfunctions 
to ORBIT—avoids potential for singularities in evaluation of 
modes and their derivatives 

•  Investigate effect of beam ion transport and loss on beam 
driven current 

•  Extend analysis methods to the frequent EPM bursts that 
occur during Ip ramp up phase 


