

Supported by

Physics design of a cryo-pumping system for NSTX-U

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL **PPPL** Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J.M. Canik

R. Maingi (ORNL), S.P. Gerhardt, M.A. Jaworski, J.E. Menard, D.P. Stotler (PPPL), E. Meier, V.A. Soukhanovskii (LLNL) and the NSTX Research Team

> 54th APS-DPP Meeting **Providence**, RI Oct 31st, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Motivation

- Particle control is needed to meet NSTX-U programmatic goals
 - Avoid density limit, radiative collapse during long-pulse (5s) discharge
 - Reduce collisionality to access new core physics
 - Control n/n_G for non-inductive scenarios
- Lithium coatings on PFCs sufficient for deuterium control, but ELMS are eliminated, leading to impurity accumulation
 - High Z_{eff} , prone to radiative collapse
 - Can be mitigated by ELM pace-making with 3D field pulses
- Cryo-pumping is being explored as a complement to lithium
 - Proven technique to control density in higher R/a tokamaks
 - May allow deuterium pumping without eliminating ELMs, so avoiding impurity accumulation problems

General layout similar to DIII-D lower outer cryo-pump system is taken as starting point for design analysis

- Plenum location studied: under new baffling structure near secondary passive plates, possibly replacing some outer divertor plates and tiles
- Pumping capacity of a toroidal liquid He cooled loop (Menon, NSTX Ideas Forum 2002)
 - S=24,000 l/s @ R=1.2m
 - Need plenum pressure of 0.83 mtorr to pump beam input (10MW~20 torr-l/s)
- Pumping rate:

CAK RIDGE

NSTX-U

$$I_{pump} = P_{pl}S = \frac{I_0}{S+C}S$$

- $P_{pl} = plenum pressure$
- I₀ = neutral flux into plenum
- C = throat conductance
- To optimize, need C(g,h), I₀(g,h)

g = throat height h = throat length

Cross-section of the pump (10 cm outer dia.)

Semi-analytic pumping model* used to optimize pumping chamber

- Uses first-flight model for neutral flux into pump plenum
- Requires knowledge of divertor plasma profiles
- Validated against DIII-D experiments

Model upgraded to include conductance correction in a long channel

54th APS-DPP – NSTX-U Cryo-pump, Canik (10/31/2012)

- I_{D0} = I_{D0}(x) = current of "fast" atomic deuterium entering from plasma
 If fast atoms are turned into thermal molecules on collision will the wall, then:
 I_{D0}(x) = I_{D0}(0)*F(x)/F(0), where F is the solid angle factor evaluated along x
- I_{D2} = current of thermal molecules leaving
- I_{D2} = volume integral of sources (I_{D0}), sinks ($P_{pl}S$) $\Rightarrow I_{D2}(x) = I_{D0}(x) - P_{pl}S$
- Pressure is $\Delta P = \int_{-\infty}^{h} I(x)\sigma(x)dx, \sigma = \frac{3}{4\overline{\nu}}\frac{H}{A^2}, \frac{1}{C} = \int_{-\infty}^{h} \sigma(x)dx$
- So plenum pressure is

NSTX-U

CAK RIDGE

$$P_{pl} = \int_{o}^{h} I_{D2}(x)\sigma(x)dx = \int_{o}^{h} I_{D0}(x)\sigma(x)dx - \int_{o}^{h} P_{pl}S\sigma(x)dx$$
$$= I_{D0}(0)\int_{o}^{h} \frac{F(x)}{F(0)}\sigma(x)dx - \frac{P_{pl}S}{C} = \frac{I_{D0}(0)}{C_{eff}} - \frac{P_{pl}S}{C} = \frac{I_{D0}(0)}{S+C}\frac{C}{C_{eff}}$$

5

Expressions for conductance, pressure have been checked with Monte Carlo neutral code EIRENE

- Set of ducts constructed in EIRENE, varying length and height
- Three calculations made for each:
 - No pumping, gas source inside plenum
 - Gives the actual conductance of duct/aperture
 - $C = I_{pl}/P_{pl}$
 - (I_{pl}=source in plenum, P_{pl}=plenum pressure)

- No pumping, gas source outside plenum (mimic neutrals coming from plasma)
 - Gives effective conductance, accounts for how far neutrals make it down duct before hitting the walls
 - $C_{eff} = I_{ent}/P_{pl}$

NSTX-U

CAK RIDGE

- (I_{ent}=current of neutrals crossing duct entrance)
- Pumping on (S=24 ,m³/s), gas source outside plenum
 - Check pressure against analytic expression:
 - $P = (C/C_{eff})^*I_{ent}/(S+C)$

EIRENE confirms pressure variations with plenum entrance geometry

- X-axis: analytic expressions, Y-axis: values calculated with EIRENE
- Conductances are ok, but duct expression is somewhat off (based on length scan on left)
- Pressure variations from EIRENE largely agree with analytic expressions
 - Difference is largely due to the conductances: if the EIRENE-calculated conductances are used, pressures lie on the line
 - Just using P=I/(S+C) gives numbers higher by ~x2-3, trends off

Projected divertor parameters combined with semi-analytic pumping model are used to calculate pumping rates

- Analytic model requires divertor n, T, Γ profiles
- Heat flux, angle of B wrt PFC surface (α), and plasma temperature are sufficient to calculate n, Γ:

 $\Gamma_{\perp} = q_{\perp}/7T$ $n = \Gamma_{\perp}/\left(\sin\alpha\sqrt{2T/m}\right)$

- Recent experiments yield scaling of SOL heat flux width
 - No-lithium scaling used here, but all trend towards $\lambda_{\rm q}{\sim}3mm$ at I_p=2MA
 - P_{div} = 5 MW assumed (1/2 of 10 MW input)
- Langmuir probes show $T_e \sim 15-20 \text{ eV}$ in far SOL, with lithium radial, I_p dependence
 - T_e~15 eV assumed (NSTX-U-like discharges)

Pressure projections are used to optimize plenum geometry parameters

- Exponentially decaying heat flux footprint imposed, with $T_e=15 \text{ eV}$
- Plenum entrance height, length are varied to maximize pressure
- Pressure in optimized plenum depends primarily on heat flux at pump entrance
 - Varied through R_{OSP} , flux expansion or $P_{tot} \Rightarrow$ profile effects not important
 - Reaching P~0.8 mTorr (to pump 10 MW NBI) requires q₁^{ent}~2 MW/m²
- Optimal plenum entrance for P=0.8mTorr: height g~2.5 cm, length h~2 cm

Equilibria with variety of R_{OSP}, flux expansion are used to map heat flux profiles, assess candidate pump entrance locations

- Standard and snowflake divertors considered
 - Four R_{OSP} each
 - ψ_N =1.0,1.03 shown
 - Movement of ψ_N =1.03 strike line is much less than that of R_{OSP}
- Flux expansion, flux surface geometry used to convert midplane heat flux profile (from scaling) to divertor heat flux

As R_{OSP} is increased, flux expansion is decreased

NSTX-U

CAK RIDGE

Realistic equilibria, heat flux scaling, and empirical T_e^{SOL} are used to project plenum pressure for candidate location R_{pump}

- Analytic model for plenum pressure with optimized entrance parameters
- Pressure is nonmonotonic with R_{pump} due to field geometry
 - At low R_{pump} , α is lower, so n/Γ_{\perp} is increased \Rightarrow more neutrals ionized before reaching pump
- Optimizing position for narrowest SOL gives R_{pump}~0.7
 - Narrow SOL gives least flexibility in moving R_{OSP} to improve pumping
 - R_{pump}=0.72 gives high P for wide range of SOL width

STANDARD DIVERTOR P₀

mTorr

R_{pump} =0.72 gives n_e control for range of I_p , equilibria

 Modified 2-pt model used to estimate n_e^{sep}

$$T_{OMP} = \left(T_{DIV}^{7/2} + \frac{7}{4\kappa_{0e}}q_{\parallel}^{sep}L\right)^{2/7}$$
$$n_{OMP} = f_{cal}\frac{2n_{DIV}T_{DIV}}{T}\frac{B_{OMP}}{T}$$

$$I_{OMP}$$
 B_{DIV}
- q_{II}^{sep} from I_p scaling,

- T_e^{div} varied
- Final n_e^{sep}: pumping=NBI input
- $\overline{n}_e/n_e^{sep} \sim 3$ used to estimate $f_G=n/n_G$

CAK RIDGE

NSTX-U

 Consistent with NSTX data

SNOWFLAKE DIVERTOR n/n_G

Optimized plenum geometry capable of pumping to low density for a range of R_{OSP}, I_p

- Equilibrium f_G down to < 0.5
 - Moving R_{OSP}
 closer to pump
 allows lower n_e,
 but limited by
 power handling
 - High flux expansion in SFD gives <u>better</u> pumping with SOLside configuration
 - More plasma in far SOL near pump
 - More room to increase R_{OSP} at high I_p

SOLPS is used to analyze pumping including near-detached conditions

- SOLPS: 2D fluid plasma/neutral transport
 - Plasma transport classical parallel to B (+kinetic corrections), ad-hoc cross-field transport coefficients
 - Kinetic neutral transport using MC code EIRENE
 - More comprehensive treatment of neutral transport (beyond first-flight)
 - Can treat radiative/detached divertor
- Both standard and snowflake divertor with R_{OSP}~0.5m studied
 - Note that grid can't extend past pump, so only small SOL region modeled
- Constant D=0.5, $\chi_{e,i}$ =2.0 m²/s
 - Gives $\lambda_q^{mid} \sim 3mm$

CAK RIDGE

(D) NSTX-U

- No attempt to match expt
- Simulations both without and with carbon included have been performed

A wide range of divertor plasma parameters have been modeled

- Input power
 P=10MW in all cases
- n_e at core grid edge set as boundary condition
 - Scanned to vary divertor conditions
- Resulting divertor parameters vary from strongly attached to nearly detached (T_e~1eV)

CAK RIDGE

NSTX-U

Snowflake shows higher plenum pressures that standard divertor for similar conditions

- At same separatrix density, pressure is ~2x higher with Snowflake divertor configuration
- Partially due to geometry of field lines at pump entrance (plasma flux reaches nearer entrance; not accounted for in earlier projections)
- Pressures above 1 mTorr can be reached at high n_e in both cases

Plenum pressure from SOLPS shows good agreement with semi-analytic expressions when divertor is attached

- Divertor n_e , T_e , Γ_{\perp} from SOLPS used in semi-analytic model
- Model reproduces pressure within factor of ~ 2 (except high n_e)
- Agreement is improved using more accurate ionization rate
 - Simple rate coefficients used in original model: $\langle \sigma v \rangle_{EII}(r) \approx \frac{3 \times 10^{-16} T_e^2(r)}{3 + 0.01 T_e^2(r)}$
 - Interpolating tables of $\langle \sigma v \rangle$ (n_e,T_e) as in EIRENE improves comparison

Semi-analytic model underestimates pressure under detached conditions

- Model pressure close to SOLPS calculation for T_e>2 eV
 - Often underestimates by ~50%
 - Model does not give large overestimate in any cases
- For T_e<2 eV SOLPScalculated pressure is up to ~3x higher than model
 - First-flight neutral model expected to break down
 - Consistent with DIII-D pumping observations

NSTX-U

CAK RIDGE

 \Rightarrow Optimization of design presented here is conservative

Pumping likely to be stronger for realistic conditions

Summary

- A promising cryo-pump design point has been identified that is compatible with standard and snowflake divertors
 - Based on semi-analytic pumping model
 - Divertor profile projections based on NSTX data
 - Snowflake shows better pumping that standard divertor
- SOLPS calculations confirm approach taken in design optimization
 - Pumping model adequate under attached conditions
 - Pressure significantly larger than model for T_e <2eV
- Next steps in pump design
 - Investigate details of plenum design, compatibility with engineering
 - Begin engineering design
 - Explore interaction between cryo and lithium coatings
 - Coating of pumping surface?
 - Pumping of lithium-modified SOL?

For given pump entrance position, heat flux at pump entrance orders the "optimal" geometry parameters

- Optimal throat height/length depend mainly on heat flux near entrance
 - Doesn't matter if it's varied by moving the OSP, changing flux expansion, or changing total power
 - T_e affects maximum pressure achievable, but only weakly affects g/h
- Optimizing for P=0.8mTorr at T_e =15.0 eV gives g~2.5 cm, h~2 cm at $q\sim 2MW/m^2$

Projecting heat flux profiles

- Exponential poloidal heat flux profile imposed at midplane - P=5 MW (e.g., 1/2 of 10 MW goes to outer divertor) $- \lambda_a^{OMP} \sim 0.3-2.0 \text{ cm}$
- Mapped along field lines to divertor

NSTX-U

CAK RIDGE

- Total geometric heat flux reduction factor shown on left
- Example heat flux profiles showing for λ_q^{OMP} =5mm
 - Heat flux high at R=0.7, significantly lower at 0.8

Heat flux projections show plenum entrance at R~0.7-0.75 m likely to provide sufficient pumping

Power handling: peak heat flux < 10 MW/m²

- Restricts R_{OSP} for narrow SOL (wider range for SFD)

• Pumping: $q_{\perp}^{entrance} > \sim 2 \text{ MW/m}^2$

Heat flux at potential plenum entrances for 8 equilibria

∭ NSTX-U ¥<u>Ridge</u>

54th APS-DPP – NSTX-U Cryo-pump, Canik (10/31/2012)

Projections show plenum entrance at R=0.72 can give >1 mTorr for wide range of SOL width, equilibria

- Heat flux profiles, T_e^{div}, and optimized entrance parameters used in analytic model for plenum pressure
- Optimizing position for narrowest SOL gives R_{pump}~0.72
 - Narrow SOL gives least flexibility in moving R_{OSP} to improve pumping

R_{pump} =0.72 supports low Greenwald fraction for range of I_{p} , equilibria

- q_{II}sep, T_e^{div} used in modified 2-pt model used to estimate n_{sep} $- q_{II}^{sep}$ from I_p scaling, T_e^{div} varied
- $n_{e}/n_{e}^{sep} \sim 3$ assumed to estimate f_{G}
- f_G shown is that at which pumped flux balances NBI input

Estimating achievable n/n_G

- n/n_G varied by scanning T_e^{div}
- To pump beams, need P~0.8 mTorr
- f_G shown is where the pumping balances beam input
 - Minimum achievable n_e -> could puff to increase

The Basic Two-Point Model

- Begins from the fluid equations and simplifies...
- Provides simple relations for upstream and target (PFC) plasma parameters
- Varying levels of complexity can be implemented
 - Fluid reconstruction via generalized 2-point (e.g. OSM/OEDGE code)
 - Coupling with Monte Carlo neutrals and impurities (e.g. DEGAS 2/EIRENE/DIVIMP)
- Start with the basics

Assume:

$$T_{e}=T_{i} \& p=p_{e}+p_{i}$$

$$\frac{d}{dx}\left[\left(\frac{1}{2}m_{i}v^{2}+5kT\right)nv-\kappa_{0e}T_{e}^{5/2}\frac{dT_{e}}{dx}\right]=Q_{R}+Q_{E}$$

Assume: Conduction Dominates Neglect Sources

Simple Extensions Attempt to Capture More Physics

- Volumetric loss terms can be included via f_{power} term
- Term can be estimated with interpretative modeling in lieu of better div. Bolom. Coverage
- Comparison of nominal LP and DBIR results are encouraging
- Two values of fpower used following: 0 and 0.5

Radiation and charge-exchange $q_{rad} + q_{cx} = f_{power} q_0$

$$(1-f_{power})q_0 = q_t = \gamma n_t c_{st} kT_t$$

$$\frac{T_t}{T_u} \propto \left(1 - f_{power}\right)^2$$

Updated Upstream Density

- Force balance in the ST requires modification to 2-PM
 - Typical formulation assumes "straight" flux tubes
 - 1.5m OMP vs. 0.5m target results in significant variation
- Flux-tube definition allows conversion of magnetic field to area
- Not yet consistently applied everywhere in calculations

 $F_u = F_t$

 $P_u A_u = P_t A_t$

$$N_{u}T_{u} = N_{t}T_{t}(1+M^{2})\frac{A_{t}}{A_{u}}$$

 $M = v/c_s \ge 1$ Mach No. at sheath

$$BA = \Psi_0 = const. \rightarrow \frac{A_t}{A_u} = \frac{B_u}{B_t}$$

$$N_u = \frac{N_t T_t (1 + M^2)}{T_u} \frac{B_u}{B_t}$$

Upstream Quantities Determined via 2-Point Model

- Parallel connection length calculated from EFIT02
 - q_{peak} used to locate nominal Ψ_{N} value for integration
 - Solution not sensitive to variance in length (robust model from target)
- Interpolated MPTS density at the upstream temperature shown for comparison
- Uncertainty not yet propagated in calculations to determine significance in discrepancy

Wall fuel uptake is ~zero during long-pulse H-modes in pumped machines

- FY09 Joule Milestone Report
- Close balance is observed between particle input (beams+puff) and pumping
 - True for both DIII-D and C-Mod
 - Motivates pumping the beam input as figure of merit

NSTX-U

CAK RIDGE

Fig. 2. ECH heated (red) H-mode plasma is compared with a NBI (black) discharge. The plasma current, neutral beam or ECH power, electron density, gas input, integral of the gas input; wall inventory and wall rate from the dynamic particle balance; along with the photodiode signal are compared with a neutral beam heated H-mode DIIID shot. Note that in both cases, the wall flux is quite large in the L-mode period, but during the ELMing H-mode, the wall flux is very close to zero.