

Supported by

Collaborative Research and Development of Liquid Metal Plasma Facing Components

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

MA Jaworski, T. Abrams, A. Khodak, <u>R. Kaita</u>, B. LeBlanc, J. Menard, M. Ono, C.H. Skinner, D.P. Stotler (PPPL), G. DeTemmerman, M.A. Gleeson, A.R. Lof, J. Scholten, M.A. Van den Berg, H.J. Van den Meiden (FOM-DIFFER), T.K. Gray (ORNL), S.A. Sabbagh (Columbia), V.A. Soukhanovskii (LLNL), J. Hu, L. Wang, G. Zuo (ASIPP)
54th American Physical Society Division of Plasma Physics Meeting, Providence, RI Oct. 29th – Nov. 2nd, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev **loffe Inst** TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science

🕕 NSTX-U

Why liquids? Because solids may not extrapolate

- •Two major failure modes for solids that are known:
 - Melting (transient heat loads)
 - Net-reshaping (erosion, migration, redeposition)
- •Some speculative failure modes:
 - Neutron-PMI synergistic effects (aside from bulk material changes)
 - Steady-state, selfregulating walls?

B. Lipschultz, et al., "Tungsten melt effects on C-MOD operation & material characteristics", 20-PSI, Aachen, Germany, May, 2012.

Coenen, et al., "Evolution of surface melt damage, its influence on plasma performance and prospects of recoverhy", 20-PSI, Aachen, Germany, May, 2012. Klimov, et al., JNM **390-391** (2009) 721.

Wall erosion/redeposition not mitigated by divertor configuration

Table 1 Rough estimate of net erosion rate of main walls based on assumptions in text. Assumes 100% wall coverage by Be, B, C or W.								
Device	P_{heat} (MW)	τ _{annual} (s/yr)	E ^{year} load (TJ/yr)	Beryllium net wall erosion rate (kg/yr)	Boron net wall erosion rate (kg/yr)	Carbon net wall erosion rate (kg/yr)	Tungsten net wall erosion rate (kg/yr)	
DIII-D	20	104	0.2	0.13	0.11	0.08	0.16	
JT 60SA	34	10 ⁴	0.34	0.22	0.19	0.15	0.27	
EAST	24	10 ⁵	2.4	1.6	1.2	0.82	1.8	
ITER	100	10 ⁶	100	77 (29) ^a	64	44 (53) ^a	92 (41) ^a	
FDF	100	10 ⁷	1000	610	500	340	740	
Reactor	400	2.5×10^7	10,000	6500 (21,000) ^b	5300	3700	7900 (5000) ^b	
4								

P.C. Stangeby, et al., JNM 415 (2011) S278.

- •Charge-exchange processes create steady wall-flux
- •Low density plasma at first wall reduces local redeposition
- •1000s of kgs of eroded material migrating around tokamak vessel
- •Likely to redeposit in locations where cooler plasmas exist or behind baffled areas of machine
- •Do PFCs remain functional with large amounts of redeposited material?
 - Need very high duty-factor to even study the problem!

Liquids already shown to outperform solids in some areas

•Red Star Capillary-Porous-System (CPS) long-since shown to resist melting damage – protect the substrate

- CPS surface consists of metal mesh wicking structure (Mo mesh)
- Capillary forces maintain liquid lithium on plasma-facing surface
- •Also shown to absorb, in steady-state, 1- 25 MW/m^2
 - Electron beam heating of the surface
 - Tests lasted between 30s-10min

•In principle, all PFCs in fully-flowing system will return to an equilibrium position (i.e. self-healing)

Exposed w/o Li

Exposed w/ Li

CPS Mo meshes after plasma exposure. Top did not have lithium fill during exposure. 15-100µm pores

Evtikhin, et al., J. Nucl. Mater. 271-272 (1999) 396.

Stability of the free-surface LM is critical

- •DIII-D Li-DIMES experiments ended in plasma disruption
 - Introduced small sample of Li into divertor of DIII-D
 - Current perturbations measured up to 10 kA/m²
 - Li plume observed when lithium ejected from sample holder
 - Disruption shortly follows lithium ejection
- •If relying on LM to protect substrate, need robust solution
 - Protect against steady-state and transient events
 - We show NSTX LLD exhibits stability in the divertor

NSTX experience with the Liquid Lithium Divertor

- •Liquid lithium divertor installed for FY2010 run campaign
- •2.2cm copper substrate, 250µm SS 316, ~150µm flamesprayed molybdenum, loaded via LITER evaporators
- •37g estimated capacity, 60g loaded by end of run campaign
- •Motivated to explore liquid lithium pumping of deuterium (c.f. Baldwin, *et al.* Nucl. Fusion 2002)

Overview of experiments

- •Experiments diverting onto the LLD occurred throughout run campaign
- •Either diverted onto LLD or just inboard on ATJ graphite
- •LITER only available filling method for the LLD
 - 7% filling efficiency estimated
 - Always coating entire lower divertor in addition to LLD
- •Database of shots taken throughout run year

High-density Langmuir probe array installed for divertor plasma characterization

- Liquid Lithium Divertor (LLD) installed to study lithium plasma-material interactions
- Probe array characterizes local plasma properties in a range of experiments
- Provides high spatial density of measurements
- •Oblique incidence yields smaller effective probe size

J Kallman, RSI 2010 MA Jaworski, RSI 2010

Consistency between diagnostics demonstrated with empirical plasma reconstruction framework

- Utilizes measured data points as starting point in constraining plasma models to fill the gaps between diagnostics
- Solution improves as more and more data constrains background
- OEDGE code suite used here: Onion-Skin Method (OSM2)+EIRENE+DIVIMP
 - OSM2 solves plasma fluid equations
 - EIRENE performs Monte Carlo neutral hydrogen transport, iteratively coupled to OSM2
 - DIVIMP performs Monte Carlo impurity transport
- Utilized here to compare probe interpretation methods against other diagnostics

Density measurement from spectroscopy confirm kinetic probe interpretation

- •Divertor spectrometer viewing strike-point region during discharge
- •Deuterium Balmer lines shown in spectra
- •Pressure broadening analysis indicates dneisty of 3.6e20 m⁻³
 - Existence of high-n Balmer lines indicates low temperature

Broadening measurement and modeling of hydrogen spectrum consistent with kinetic probe interpretation

- Pressure broadening yields density
- OEDGE plasma+neutral solution provides local parameters
- Collisional-radiative model by D. Stotler calculates excited state populations
- Brightness ratios normalized to B6-2 consistent with 3<T_<5eV

Jaworski, et al., 20th PSI, Aachen, Germany, June 2012.

Rel. Brightness [A.U.]

Distribution function analysis indicates some local changes in plasma conditions on plasma-heated LLD

- Discharge sequence repeatedly heated and plasma-conditioned the LLD surface
- Local plasma temperatures elevated with hotter LLD surface temperature $(T_{LLD} > T_{melt,Li})$
- Increase in plasma temperatures correlated with increase in V_{n} - V_{f} potential difference¹
- Local changes raise the question whether large-scale global changes are also observed...

M.A. Jaworski – 54th APS Division of Plasma Physics Meeting – Providence, RI – Oct. 31st, 2012

- •Embedded thermocouples provide measure of temperature changes from before and after discharge
- •Each plate is 43kg of copper
 - $\Delta E = mc_{p}\Delta T$ per plate
 - $P_{LLD} \sim 4\Delta E \ / \ \tau_{pulse}$
 - $P_{LCFS} = P_{NBI} + P_{OHM} P_{RAD} dW/dt$
- •LLD absorbing about 25% of exhaust power (P_{LCFS})
 - ~1MW in some cases
- •No molybdenum observed in the plasma after melted (Soukhanovskii, **RSI**, 2010)

Jaworski, et al., IAEA FEC 2012

No macroscopic ejection of lithium observed; Demonstration of Stable Operation of LM PFC in Divertor Configuration

•Large transient currents measured $n^2 = k(jB/\rho - g) \left[1 - \frac{k^2 \Sigma}{(jB/\rho - g)\rho} - \frac{B^2 k_x^2}{2\pi \mu_0 (jB/\rho - g)\rho k} \right]$ with Langmuir probes

- Magnetized Raleigh-Taylor analysis provides stability curves
- Indicates strong stabilization expected with small feature sizes
- •CPS tests also reduced droplet ejection with smaller pore sizes*

Jaworski JNM 2011, Jaworski IAEA FEC 2012, Whyte FED 2004, *Evtikhin JNM 2002

Droplet Radius [m]

Surface contamination indicates this was not a "fair" test of a liquid lithium PFC

•Divertor filterscopes provide indicator of impurities

- Relative fraction of impurity should be reflected in sputter yield
- Particle flux proportional to power
- •Normalization against flux indicates no difference diverted onto the LLD
- •Plasma cleaning in PISCES-B did show oxygen reduction*
 - 400s, T>600K
 - LLD transiently exceeded these temperatures, but not steady

• $\tau_{intershot} \sim \tau_{oxidize}$ indicates oxidation likely (see GO6.008, A. Capece)

Jaworski IAEA FEC 2012, *Baldwin NF 2002.

🔘 NSTX-U

Performance should be independent of lithium quantity *if* surface contamination is key variable

- •FY2010 LLD experimental set
 - Experiments span 60g to nearly 1kg of deposited lithium
 - Includes 75hr deposition at midyear
 - Calculate ITER 97L H-factor *average* from 400-600ms for each discharge
- •Discharges look about the same between start and end of run
 - Consistent with surface contamination hypothesis

```
Fully-flowing PFC can provide a means
of sweeping away gettered material and
creating "stationary" surface
conditions.
```


Jaworski, et al., IAEA FEC 2012

🔘 NSTX-U

Active supply, capillary-restrained systems (PPPL)

- •Hybrid approach to join flow-thru loop with active cooling
 - Leverage numerous results an experience with thin, capillary-restrained concepts
 - Maintain thin structures (as thin as possible) to maximize heat transfer to coolant
- •Modular approach considered to provide optimization space
 - T-tube concept shown, other gas cooling schemes available (e.g. SOFIT, vapor-box/heat pipes)
 - Surface could be flame-sprayed or other scheme (e.g. laser textured)

Current work-in-progress: steel with low-Z lithium coating

- •T-tube size reduced to minimize wall thickness, supercritical-CO2 coolant
- •F82H steel properties with liquid lithium used in design
 - Liquid lithium evaporative cooling included
 - 10 MW/m² heat flux simulated, no nuclear heat
 - No provision for plasma cooling and shielding
- •Steel structure maintained below ~650C, close to range for ODS-steel operation*

*Zinkle,, Ghoniem, Fusion Eng. Des. **51-52** (2000) 55.

Still optimizing/developing 3D solution, 720C might be too hot**

Apiccella, et al., PPCF **54 (2011) 035001.

🔘 NSTX-U

Experiment construction underway to provide testbed for PFCs and demonstration of necessary technologies

- •Liquid lithium loop for demonstration of:
 - Safe operation of loop
 - Robust operation and maintainability
 - Develop control systems, handling procedures
 - And expertise for integration with tokamak systems
- •PFC proof-of-principle tests
 - Couple to vacuum system
 - Demonstrate LM concepts in relevant vacuum environment

Liquid Lithium Test Stand Loop Diagram

EM pump designed, hardware currently being fabricated

Predicted Pump Performance

🔘 NSTX-U

Initial lithium experiments at Magnum-PSI examining lithium material migration and oxide removal

•Magnum-PSI

- Linear plasma device
- Divertor plasma simulator density and temperature similar to NSTX divertor
- Lithium evaporator commissioned for these experiments
- Well-diagnosed
- •Initial experiments on NSTX-U candidate PFC materials
 - ATJ graphite, TZM, W
 - Examine behavior of coatings under 5s discharges over range of Ne and Te

See also T. Abrams PP8.00033 NEXT POSTER

Magnum-PSI plasmas similar to NSTX divertor conditions

Parameter	Magnum-PSI	NSTX discharges with heavy lithium (Liquid Lithium Divertor)	
Power [kW]	60	4 MW NBI (15MW NSTX-U)	
Pressure source [Pa]	104	N/A	
Pressure target [Pa]	<3	~0.1-1 (OEDGE modeling)	
Ti target [eV]	0.1-10	1-50?	
Te target [eV]	0.1-10	1-15 (non-Maxwellian)	
Ni target [m ⁻³]	10 ²⁰ -10 ²¹	5x10 ²⁰ at SP	
Ion flux target [m ⁻² s ⁻¹]	10 ²⁴ -10 ²⁵	2x10 ²³ at SP	
Power flux [MW m ⁻²]	10	2-5 at ~5 deg. Incl. (25 unmit.)	
B [T]	1.9	0.6 (1T NSTX-U)	
Beam diameter [cm]	10-1.5	~4cm FWHM	
Pulse length [s]	12-110	1s (5s-10s)	
Target size [cm]	3cm – 60x12	Order~10cm	
Bias [V]	-100 < V _{target} < 0	-20 < V _{floating} < 20	

WNSTX-U

M.A. Jaworski – 54th APS Division of Plasma Physics Meeting – Providence, RI – Oct. 31st, 2012

Simple transport models under development to understand local material transport

•Quasi-2D transport model developed

- 1D mass continuity in x
- 1D profile variation in r

•Emission simulated using ADAS rate coefficients

•Next-steps: include ion fluid and recombination emission

M.A. Jaworski – 54th APS Division of Plasma Physics Meeting – Providence, RI – Oct. 31st, 2012

Reprints

Work supported by DOE contract DE-AC02-09CH11466

Deposited lithium lifetime also explored on EAST

UO-LP21

UO-LP20

UO-LP01

LO-LP01

LO-LP20

LO-LP21

UO-GPI

D_α (1-35A)

D_α (1-35C)

LO-GPI

SMBI provides pump-out measurement, diagnosed with divertor Langmuir probes

- •Characteristic pump-out times related to local recycling
 - Source-free times between gas puffs
 - Analyze probe I_{sat} signal while SMBI used for core-density feedback
- Local recycling affects pump-out
 - More recycling lengthens the characteristic time-constant
 - Limit of no recycling is the ion transit time in a flux-tube
- •Same time response seen on filterscope signals

Probe characteristic times vary in consistent manner with discharge fueling requirements

•Higher fueling requirements (integrated SMBI signal) correspond to shorter pump-out times implying lower recycling

•Discharge sequence implies Lithium coating efficacy decreasing w/ shot#

NSTX-U lithium research proceeding through numerous collaborations during the upgrade period

- •Liquid Lithium Divertor research has produced important results for NSTX-U
 - Capillary-restrained liquid metal PFC system demonstrated in divertor configuration
 - Oxygen impurities complicate test of lithium PFCs
 - Motivates *flowing system* development
- •Magnum-PSI linear test-stand experiments exploring local material transport and compositional variations
 - Similar plasmas as observed in NSTX divertor
 - Ability to test candidate NSTX-U PFC materials
- •EAST collaboration providing insight into lithium lifetime including fueling, diagnostic methods and analysis