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Why liquids? Because solids may not extrapolate

●Two major failure modes for 
solids that are known:

– Melting (transient heat 
loads)

– Net-reshaping (erosion, 
migration, redeposition)

●Some speculative failure 
modes:

– Neutron-PMI synergistic 
effects (aside from bulk 
material changes)

– Steady-state, self-
regulating walls?

B. Lipschultz, et al., “Tungsten melt effects on C-MOD 
operation & material characteristics”, 20-PSI, Aachen, 
Germany, May, 2012.

Coenen, et al., “Evolution of surface melt damage, its influence 
on plasma performance and prospects of recoverhy”, 20-PSI, 
Aachen, Germany, May, 2012.
Klimov, et al., JNM 390-391 (2009) 721.
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Wall erosion/redeposition not mitigated by divertor 
configuration

●Charge-exchange processes create steady wall-flux
●Low density plasma at first wall reduces local redeposition
●1000s of kgs of eroded material migrating around tokamak vessel
●Likely to redeposit in locations where cooler plasmas exist or 
behind baffled areas of machine
●Do PFCs remain functional with large amounts of redeposited 
material?

– Need very high duty-factor to even study the problem!

P.C. Stangeby, et al., JNM 415 (2011) S278.
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Liquids already shown to outperform solids in some areas

●Red Star Capillary-Porous-System 
(CPS) long-since shown to resist melting 
damage – protect the substrate

– CPS surface consists of metal 
mesh wicking structure (Mo mesh)

– Capillary forces maintain liquid 
lithium on plasma-facing surface

●Also shown to absorb, in steady-state, 1-
25 MW/m2

– Electron beam heating of the 
surface

– Tests lasted between 30s-10min
●In principle, all PFCs in fully-flowing 
system will return to an equilibrium 
position (i.e. self-healing)

Exposed w/ Li

Exposed w/o Li

CPS Mo meshes after plasma 
exposure.  Top did not have lithium 
fill during exposure. 15-100μm pores

Evtikhin, et al., J. Nucl. Mater. 271-272 (1999) 396.
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Stability of the free-surface LM is critical

●DIII-D Li-DIMES experiments ended 
in plasma disruption

● Introduced small sample of Li into 
divertor of DIII-D

● Current perturbations measured  
up to 10 kA/m2

● Li plume observed when lithium 
ejected from sample holder

● Disruption shortly follows lithium 
ejection

●If relying on LM to protect substrate, 
need robust solution

– Protect against steady-state 
and transient events

– We show NSTX LLD exhibits 
stability in the divertor

Lithium emission

Whyte, et al., Fusion Eng. Des. 72 (2004) 133.
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NSTX experience with the Liquid Lithium Divertor

●Liquid lithium divertor installed for FY2010 run campaign
●2.2cm copper substrate, 250μm SS 316, ~150μm flame-
sprayed molybdenum, loaded via LITER evaporators
●37g estimated capacity, 60g loaded by end of run campaign
●Motivated to explore liquid lithium pumping of deuterium (c.f. 
Baldwin, et al. Nucl. Fusion 2002)
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Overview of experiments

●Experiments diverting onto 
the LLD occurred 
throughout run campaign
●Either diverted onto LLD or 
just inboard on ATJ graphite
●LITER only available filling 
method for the LLD

● 7% filling efficiency 
estimated

● Always coating entire 
lower divertor in addition 
to LLD

●Database of shots taken 
throughout run year

No boronization campaign 
prior to lithium 
introduction
Database already starts 
with 60g inventory in 
vessel
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High-density Langmuir probe array installed for divertor 
plasma characterization

Liquid Lithium Divertor 
(LLD) installed to study 
lithium plasma-material 
interactions

Probe array characterizes 
local plasma properties in a 
range of experiments

Provides high spatial 
density of measurements

Oblique incidence yields 
smaller effective probe size

Diagnostic tile

2x7mm
electrode

J Kallman, RSI 2010
MA Jaworski, RSI 2010
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Consistency between diagnostics demonstrated with 
empirical plasma reconstruction framework

Utilizes measured data points as starting 
point in constraining plasma models to fill 
the gaps between diagnostics

Solution improves as more and more data 
constrains background

OEDGE code suite used here: Onion-Skin 
Method (OSM2)+EIRENE+DIVIMP

 OSM2 solves plasma fluid 
equations

 EIRENE performs Monte Carlo 
neutral hydrogen transport, 
iteratively coupled to OSM2

 DIVIMP performs Monte Carlo 
impurity transport

Utilized here to compare probe 
interpretation methods against other 
diagnostics
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Divertor spectrometer 
view

F. Scotti

●Divertor spectrometer viewing strike-point 
region during discharge
●Deuterium Balmer lines shown in spectra
●Pressure broadening analysis indicates 
dneisty of 3.6e20 m-3

● Existence of high-n Balmer lines indicates 
low temperature

Density measurement from spectroscopy confirm kinetic 
probe interpretation
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Broadening measurement and modeling of hydrogen 
spectrum consistent with kinetic probe interpretation

Pressure broadening yields density
OEDGE plasma+neutral solution 
provides local parameters
Collisional-radiative model by D. Stotler 
calculates excited state populations
Brightness ratios normalized to B6-2 
consistent with 3<T

e
<5eV

Jaworski, et al., 20th PSI, Aachen, Germany, June 2012.

Balmer-Series Brightness Ratios

 B6-2 norm
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Distribution function analysis indicates some local changes 
in plasma conditions on plasma-heated LLD

Discharge sequence repeatedly heated and 
plasma-conditioned the LLD surface

Local plasma temperatures elevated with 
hotter LLD surface temperature (T

LLD
 > T

melt,Li
)

Increase in plasma temperatures correlated 
with increase in V

p
-V

f 
potential difference1

Local changes raise the question whether 
large-scale global changes are also 
observed...

Comparisons made on
identical ψN locations

Tmelt,Li = 181C

1Jaworski et al., Fusion Eng. Des. 87 (2012) 1711.
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Significant power onto LLD measured

●Embedded thermocouples provide 
measure of temperature changes from 
before and after discharge
●Each plate is 43kg of copper

●  ΔE = mc
p
ΔT per plate

● P
LLD

 ~ 4ΔE / τ
pulse

● P
LCFS

 = P
NBI

+P
OHM

-P
RAD

-dW/dt

●LLD absorbing about 25% of exhaust 
power (P

LCFS
)

● ~1MW in some cases
●No molybdenum observed in the 
plasma after melted (Soukhanovskii, 
RSI, 2010)

Jaworski, et al., IAEA FEC 2012

Graphite LLD
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No macroscopic ejection of lithium observed; Demonstration 
of Stable Operation of LM PFC in Divertor Configuration

●Large transient currents measured 
with Langmuir probes
●Magnetized Raleigh-Taylor 
analysis provides stability curves
●Indicates strong stabilization 
expected with small feature sizes
●CPS tests also reduced droplet 
ejection with smaller pore sizes*

For the fastest 
growing modes

Jaworski JNM 2011, Jaworski IAEA FEC 2012, Whyte FED 2004, *Evtikhin JNM 2002

Pore 
size

Cup
size
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Surface contamination indicates this was not a “fair” test of a 
liquid lithium PFC

●Divertor filterscopes provide indicator 
of impurities

● Relative fraction of impurity should 
be reflected in sputter yield

● Particle flux proportional to power
●Normalization against flux indicates no 
difference diverted onto the LLD
●Plasma cleaning in PISCES-B did 
show oxygen reduction*

● 400s, T>600K
● LLD transiently exceeded these 

temperatures, but not steady

●τ
intershot

 ~ τ
oxidize

 indicates oxidation likely 

(see GO6.008, A. Capece)

imp∝N imp∝Y imp J sat

Y imp∝Y imp
0

imp

P∝ J satT e

imp∝
imp

P

Emission ϵ
Coverage θ
Divertor Power P

Jaworski IAEA FEC 2012, *Baldwin NF 2002.
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Performance should be independent of lithium quantity if 
surface contamination is key variable

●FY2010 LLD experimental set
● Experiments span 60g to nearly 

1kg of deposited lithium
● Includes 75hr deposition at mid-

year
● Calculate ITER 97L H-factor 

average from 400-600ms for each 
discharge

●Discharges look about the same 
between start and end of run

● Consistent with surface 
contamination hypothesis 

Jaworski, et al., IAEA FEC 2012

Fully-flowing PFC can provide a means 
of sweeping away gettered material and 
creating “stationary” surface 
conditions.
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Active supply, capillary-restrained systems (PPPL)

●Hybrid approach to join flow-thru 
loop with active cooling

● Leverage numerous results an 
experience with thin, capillary-
restrained concepts

● Maintain thin structures (as thin 
as possible) to maximize heat 
transfer to coolant

●Modular approach considered to 
provide optimization space

● T-tube concept shown, other gas 
cooling schemes available (e.g. 
SOFIT, vapor-box/heat pipes)

● Surface could be flame-sprayed 
or other scheme (e.g. laser 
textured)
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Current work-in-progress: steel with low-Z lithium coating

●T-tube size reduced to 
minimize wall thickness, 
supercritical-CO2 coolant
●F82H steel properties with 
liquid lithium used in design

● Liquid lithium evaporative 
cooling included

● 10 MW/m2 heat flux simulated, 
no nuclear heat

● No provision for plasma cooling 
and shielding

●Steel structure maintained 
below ~650C, close to range 
for ODS-steel operation*

*Zinkle,, Ghoniem, Fusion Eng. Des. 51-52 (2000) 55.

Still optimizing/developing 3D solution, 
720C might be too hot**

**Apiccella, et al., PPCF 54 (2011) 035001.

Li

Coolant

Tmax = 720C

Steel
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Experiment construction underway to provide testbed for 
PFCs and demonstration of necessary technologies

Liquid Lithium Test 
Stand Loop Diagram

●Liquid lithium loop for 
demonstration of:

● Safe operation of loop
● Robust operation and 

maintainability
● Develop control systems, 

handling procedures
● And expertise for integration 

with tokamak systems
●PFC proof-of-principle tests

● Couple to vacuum system
● Demonstrate LM concepts in 

relevant vacuum environment
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EM pump designed, hardware currently being fabricated

Magnetic field simulation Predicted Pump Performance

Lithium Reservoirs
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Initial lithium experiments at Magnum-PSI examining lithium 
material migration and oxide removal

Li-I Emission Profile

●Magnum-PSI
● Linear plasma device
● Divertor plasma simulator – 

density and temperature similar 
to NSTX divertor

● Lithium evaporator 
commissioned for these 
experiments

● Well-diagnosed
●Initial experiments on NSTX-
U candidate PFC materials

● ATJ graphite, TZM, W
● Examine behavior of coatings 

under 5s discharges over range 
of Ne and Te

See also T. Abrams PP8.00033 NEXT POSTER
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Magnum-PSI plasmas similar to NSTX divertor conditions

Parameter Magnum-PSI NSTX discharges with heavy lithium 
(Liquid Lithium Divertor)

Power [kW] 60 4 MW NBI (15MW NSTX-U)

Pressure source [Pa] 104 N/A

Pressure target [Pa] <3 ~0.1-1 (OEDGE modeling)

Ti target [eV] 0.1-10 1-50?

Te target [eV] 0.1-10 1-15 (non-Maxwellian)

Ni target [m-3] 1020-1021 5x1020 at SP

Ion flux target [m-2s-1] 1024-1025 2x1023 at SP

Power flux [MW m-2] 10 2-5 at ~5 deg. Incl. (25 unmit.)

B [T] 1.9 0.6 (1T NSTX-U)

Beam diameter [cm] 10-1.5 ~4cm FWHM

Pulse length [s] 12-110 1s (5s-10s)

Target size [cm] 3cm – 60x12 Order~10cm

Bias [V] -100 < V
target

 < 0 -20 < V
floating

 < 20
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Simple transport models under development to understand 
local material transport

Simulated Diagnostic View

Sightline

∂N r 
∂ t

∇⋅v N r =SizSrec

N x , r=N0r exp −x
iz r  

iz r =
v Li

N e Seff
iz
N e r  ,T er 

 Li
sputt.

=Y D Li
D
inc.
=Y D LiNDr cs r 

N0r =Y D LiN Dr 
csr 

vLi

●Quasi-2D transport model developed
● 1D mass continuity in x
● 1D profile variation in r

●Emission simulated using ADAS rate 
coefficients
●Next-steps: include ion fluid and 
recombination emission
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Reprints

Work supported by DOE contract DE-AC02-09CH11466
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Deposited lithium lifetime also explored on EAST

●ASIPP long-pulse device: EAST
● Superconducting, lithium wall 

conditioning
● Excellent diagnostic coverage

●Transient fueling with SMBI
● Supersonic Molecular Beam Injector
● Feed-back density control

H. Guo, et al., J. Nucl. Mater. (2011)
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SMBI provides pump-out measurement, diagnosed with 
divertor Langmuir probes

●Characteristic pump-out times 
related to local recycling

● Source-free times between gas 
puffs

● Analyze probe I
sat

 signal while 

SMBI used for core-density 
feedback

●Local recycling affects pump-out
● More recycling lengthens the 

characteristic time-constant
● Limit of no recycling is the ion 

transit time in a flux-tube
●Same time response seen on filter-
scope signals

SMBI Control Sig.

Analysis Fit
I
sat

V
dn
dt

= AS0

=out− in=1−R  out

out A=I sat∝nc s

dn
n
=
1−R c s

Lchar

dt

nt =n0exp  1−R c s

Lchar

t 
=

Lchar

1−R c s
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t 
[A
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Probe characteristic times vary in consistent manner with 
discharge fueling requirements

τ = 90ms (LP), 30ms (Dα)
τ = 95ms (LP), 30ms (Dα)
τ = 100ms (LP), 50ms (Dα)
τ = 125ms (LP), 65ms (Dα)

Averaging period

●Higher fueling requirements (integrated SMBI signal) correspond to shorter 
pump-out times implying lower recycling
●Discharge sequence implies Lithium coating efficacy decreasing w/ shot#

J. Menard

G
as

 In
p

u
t 

[A
.U

.]

Single Li evaporation 
for entire day
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NSTX-U lithium research proceeding through numerous 
collaborations during the upgrade period

●Liquid Lithium Divertor research has produced important 
results for NSTX-U

● Capillary-restrained liquid metal PFC system 
demonstrated in divertor configuration

● Oxygen impurities complicate test of lithium PFCs
● Motivates flowing system development

●Magnum-PSI linear test-stand experiments exploring 
local material transport and compositional variations

● Similar plasmas as observed in NSTX divertor
● Ability to test candidate NSTX-U PFC materials

●EAST collaboration providing insight into lithium lifetime 
including fueling, diagnostic methods and analysis
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