

Supported by

Algorithm Development for Multi-Energy Soft-X-Ray based T_o Profile Coll of Wm & Marv Columbia U Reconstruction CompX **General Atomics**

Daniel J Clayton K Tritz, M Finkenthal, D Kumar, D Stutman Johns Hopkins University 54th Annual Meeting of the APS Division of Plasma Physics, Providence, RI October 31, 2012

mperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP.** Garching ASCR. Czech Rep

Office of

Science

U Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC NSTX-U

FIU

INL

LANL

LLNL

MIT

Lodestar

Lehiah U

ORNL

PPPL

SNL

Nova Photonics

Old Dominion

Princeton U

Think Tank. Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Illinois

UCLA

UCSD

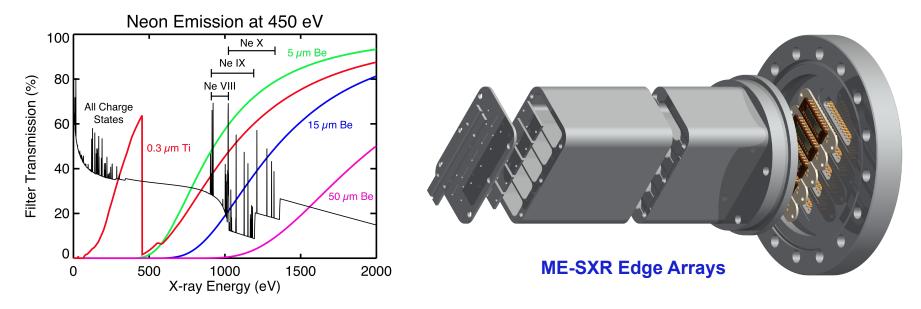
Johns Hopkins U

Neural Networks can be Used to Calculate Fast (>10 kHz) T_e Profiles from Multi-Energy SXR Measurements

- Thomson scattering provides 60 Hz T_e measurements
- With proper atomic and impurity transport modeling, multi-energy SXR data has been used to calculate highresolution (~10 kHz) T_e between Thomson pulses
- Neural networks can calculate T_e without these complex models, and can be used for real-time T_e measurements
- These neural networks have been studied with synthetic x-ray data, and successfully tested with real data

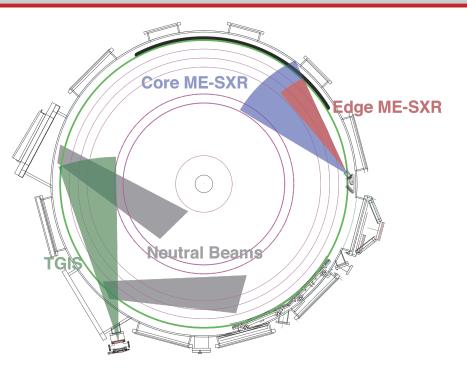
Multi-Energy SXR Arrays Use High Time Resolution Diode Arrays with Different Filters for Coarse Spectral Resolution

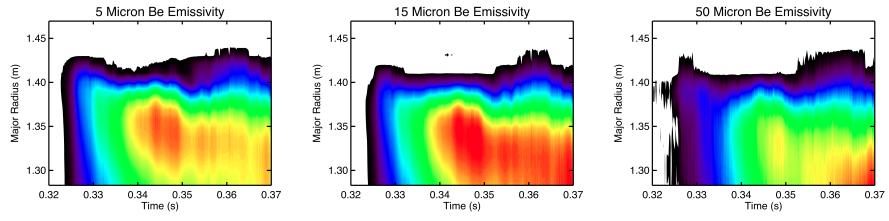
- NSTX edge array used 5 diode arrays (0.3 µm Ti, 5, 15, and 50 µm Be, and one without a filter for bolometry)
- 20 spatial channels provided ~1 cm resolution of the plasma edge (R=127-147 cm) with a time resolution >10 kHz
- Digitally-controlled variable gain amplifiers provided excellent signal-to-noise for the low intensities measured in the edge



NSTX-U Will Have a New In-vessel ME-SXR Diagnostic with Core and Edge Subarrays

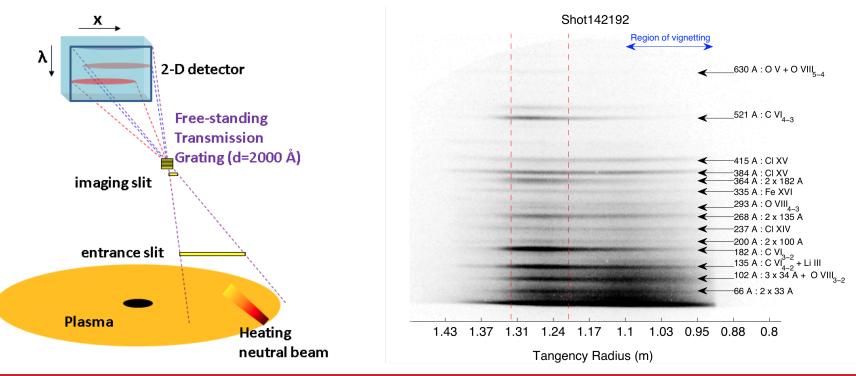
- Core ME-SXR for fast T_e, impurity transport, MHD measurements
- Hi-res edge ME-SXR to study edge phenomena such as ELMs
- TGIS will have same view of the original neutral beam





A Transmission Grating based UV Imaging Spectrometer Provides Constraints on Impurity Concentrations

- Radially resolved spectrometer operates in a survey mode covering 30 to 700 Å with spectral resolution $\delta\lambda/\lambda \sim 3\%$.
- Detector time resolution is less than for ME-SXR (400 ms will be upgraded to 10 ms for NSTX-U)



It has Previously been Shown that Electron Temperature can be Found Numerically from ME-SXR Measurements

- Linearization of elements contributing to x-ray emission allows separation of T_e , n_e , and impurity concentrations by using the differences between filtered measurements
- SXR emissivity, E_f , is a function of density and impurity response (a function of T_e) weighted by concentration

$$E_f(n_e,T_e,c) = n_e^2 \sum_i c_i R_{f,i}$$

• 2nd order expansion adds additional terms, including 'crossterm' dependence on change in temperature and density

$$\Delta E_{f} = \frac{\partial E_{f}}{\partial n_{e}} \Delta n_{e} + \frac{\partial^{2} E_{f}}{\partial n_{e}^{2}} \frac{\Delta n_{e}^{2}}{2} + \frac{\partial E_{f}}{\partial T_{e}} \Delta T_{e} + \frac{\partial^{2} E_{f}}{\partial T_{e}^{2}} \frac{T_{e}^{2}}{2} + \frac{\partial^{2} E_{f}}{\partial n_{e} \partial T_{e}} \Delta n_{e} \Delta T_{e}$$

Emissivity Calculations Depend on Accurate Modeling of Atomic Processes and Impurity Transport

• Change in relative emissivity depends also on curvature of filtered response function $R_f(T_e)$

$$\frac{\Delta E_{f}}{E_{f}} = \frac{2\Delta n_{e}}{n_{e}} + \frac{\Delta n_{e}^{2}}{n_{e}^{2}} + \frac{\sum_{i}^{i} c_{i} R_{f,i}'}{\sum_{i}^{i} c_{i} R_{f,i}} \Delta T_{e} + \frac{\sum_{i}^{i} c_{i} R_{f,i}''}{\sum_{i}^{i} c_{i} R_{f,i}} \frac{\Delta T_{e}^{2}}{2} + \frac{2\sum_{i}^{i} c_{i} R_{f,i}'}{n_{e} \sum_{i}^{i} c_{i} R_{f,i}} \Delta n_{e} \Delta T_{e}$$

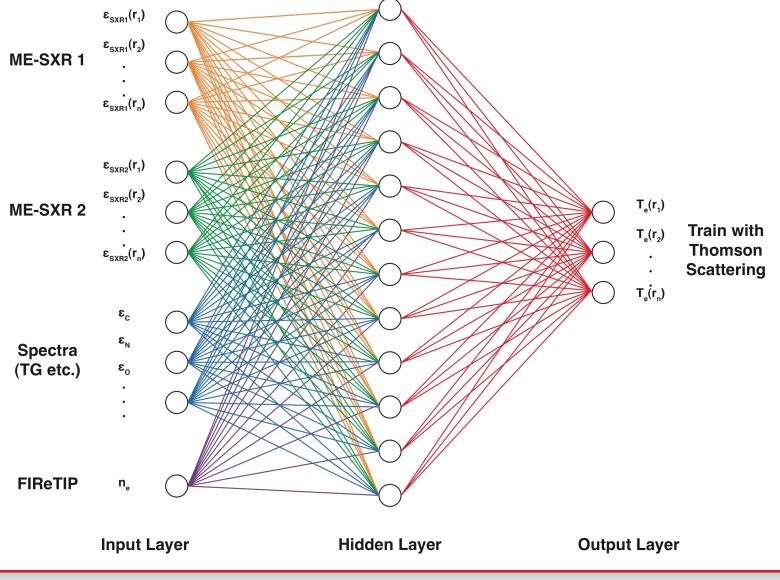
 Difference of relative emissivities removes 1st and 2nd order terms, but leaves dependence on density from 'cross-term,' solve for T_e using quadratic equation

$$\frac{\Delta E_{f1}}{E_{f1}} - \frac{\Delta E_{f2}}{E_{f2}} = \begin{bmatrix} \sum_{i} c_{i} R'_{f1,i} & \sum_{i} c_{i} R'_{f2,i} \\ \sum_{i} c_{i} R_{f1,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f1,i} & c_{i} R_{f2,i} \end{bmatrix} \left(1 + \begin{bmatrix} 2\Delta n_{e} \\ n_{e} \end{bmatrix} \right) \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f1,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f1,i} & c_{i} R_{f2,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f1,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f2,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f1,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f2,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f1,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f2,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f1,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f2,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f2,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f1,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R_{f2,i} & \sum_{i} c_{i} R_{f2,i} \\ i & c_{i} R_{f2,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ i & c_{i} R''_{f1,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f2,i} \\ i & c_{i} R''_{f1,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f1,i} \\ \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f1,i} \\ i & c_{i} R''_{f1,i} \end{bmatrix} \Delta T_{e} + \begin{bmatrix} \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f1,i} \\ \sum_{i} c_{i} R''_{f1,i} & \sum_{i} c_{i} R''_{f1,i}$$

A Simple Feedforward Neural Network Was Tested on Synthetic X-ray Data as an Alternative to Finding T_e

- PyBrain, a modular machine learning library for Python, was utilized to create the neural network
- A three-layer feedforward network was used
 - Input layer with up to 461 nodes (20 for each ME-SXR array, 400 for the TGIS, 1 for FIReTIP)
 - The number of nodes in the hidden layer was optimized
 - Unless otherwise stated, 40 hidden nodes were used
 - Output layer had 20 nodes, for temperature profiles with the same radial resolution as the ME-SXR arrays
 - The layers were fully connected
- The Rprop- learning algorithm [Igel and Hüsken, Neurocomputing 50 (2003) 105-123] is used for supervised training of the neural network
 - All input and outputs are scaled to the range of 0 to 1 for best results

A Fully-Connected Three-Layer Neural Network Inputs X-ray and Spectroscopic Data, Outputs Temperature Profiles

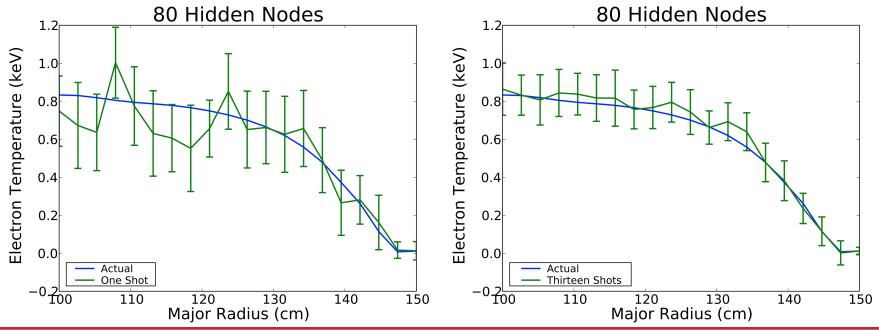


Synthetic X-Ray Data were Generated using Real Thomson Data and Emissivity Coefficients from Atomic Models

- Electron temperature and density were obtained from Thomson scattering, carbon density from CHERS
- Additional impurities were assumed to have the same density profile as carbon (O 20% of C, N 10%, Fe 0.1%)
- Impurities were assumed to be in coronal equilibrium
- CHIANTI atomic database was used to calculate line and continuum emission from each impurity
- Synthetic ME-SXR, TGIS, and FIReTIP diagnostics were used to calculate expected signals
- Gaussian noise was added to each signal
- To account for slow TGIS time response (relative to the ME-SXR), an additional, correlated noise was added to each channel of the diagnostic

Neural Network Performance Improves as the Training Dataset Grows

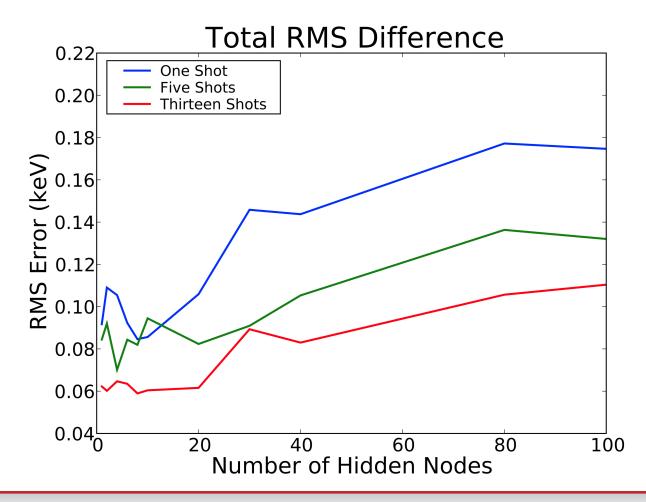
- Each discharge provides ~30-50 Thomson measurements for training (only times with peak T_e > 200 eV were used)
- Test case was tried on a NN trained with one shot, then on a NN trained with 13 shots covering B_T and I_P scans
- Error bars represent total RMS error throughout a discharge



APS-DPP 2012 – ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)

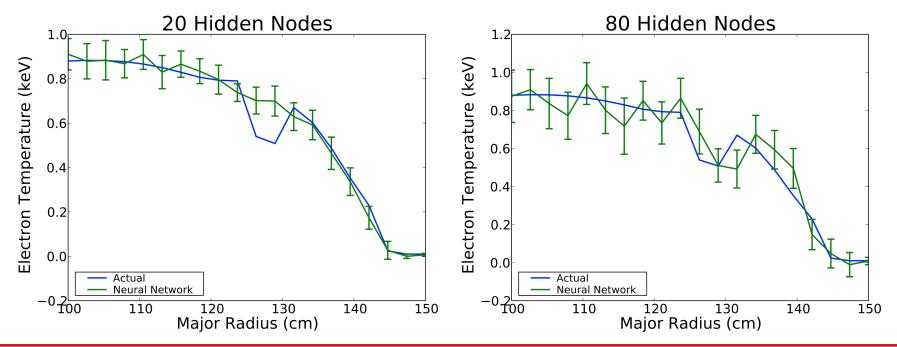
Fewer Hidden Nodes Generated Fits with Smaller RMS Error

• A large dataset and small number of hidden nodes provides a neural network with the smallest error



Reducing the Number of Hidden Nodes Smooths Out the Temperature Profile, which can Miss Radial Structures

- A narrow band of depressed temperature (a "cold pulse") was added to the synthetic data
- With 20 Hidden nodes, the total RMS error was small, but the pulse was not picked up
- With 80 hidden nodes, the network recognizes the pulse



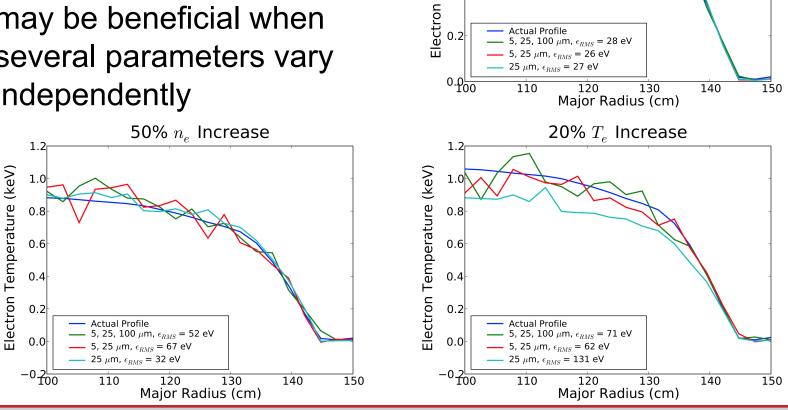
Multiple ME-SXR Arrays are Needed to Distinguish Changing **Temperatures from Densities and Impurity Concentrations**

1.0

Temperature (keV) ^{9.0} ^{8.0} ^{8.0}

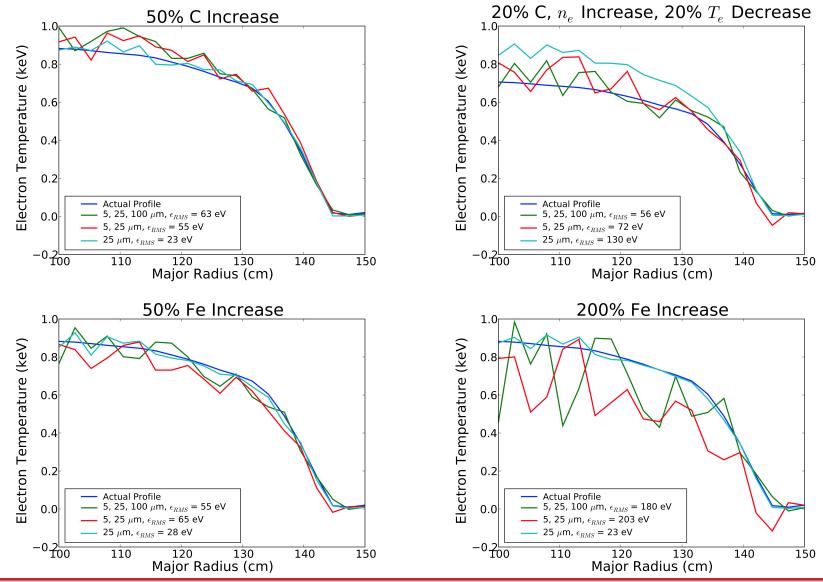
No Change

- When trained on one array, network is unresponsive to changes in one parameter
- A third (or more) arrays may be beneficial when several parameters vary independently



APS-DPP 2012 – ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)

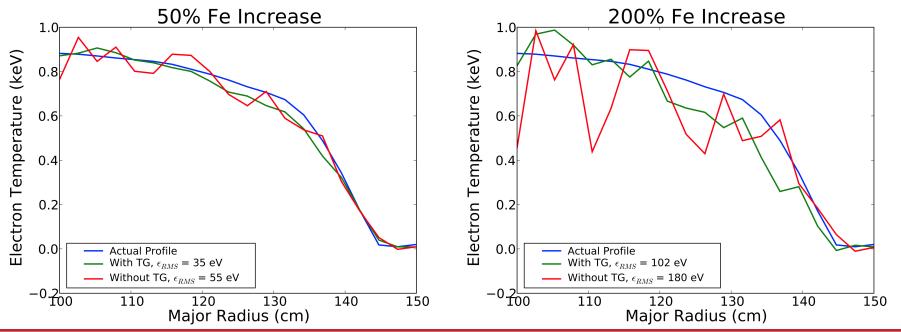
Network Works for Small Changes in Impurity Concentration, but not for Large Influxes that are not Included in Training



APS-DPP 2012 – ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)

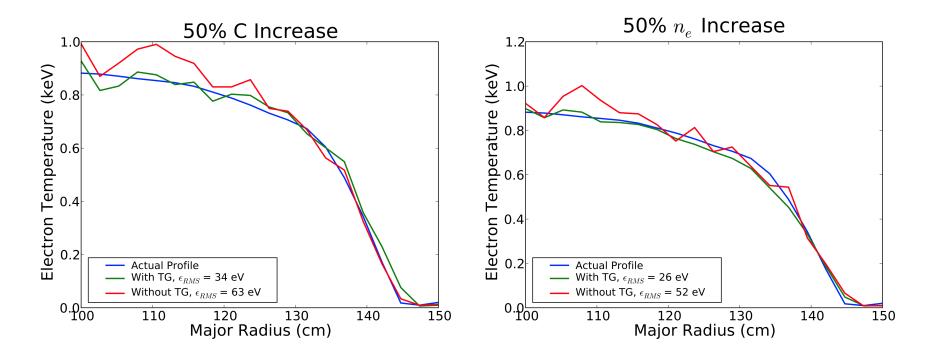
Unexpected Impurity Influx can be Accounted for with TGIS or Other Spectroscopy Data

- TGIS data does an excellent job correcting small errors from changes in impurity concentrations, and also does a reasonable job correcting for very large influxes of impurities
- Other spectrometers, while not providing the spatial resolution of the TGIS, might contribute additional constraints, or could possibly be used in real-time



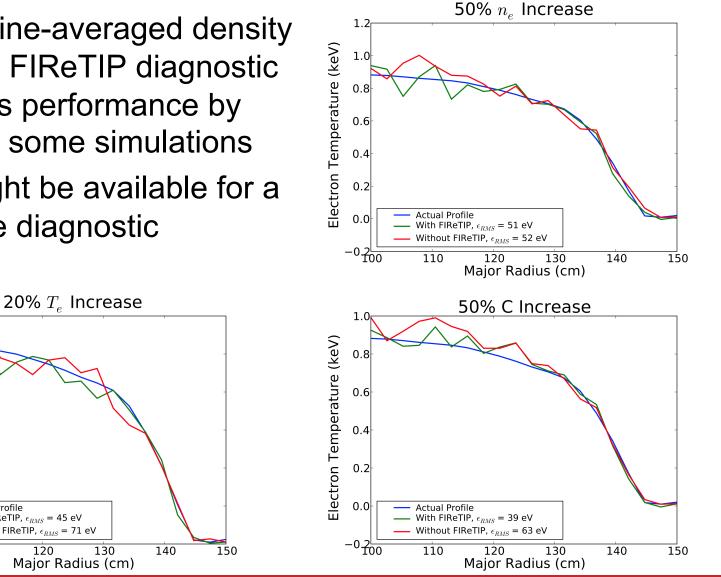
Additionally, the TGIS Improves Neural Network Performance with Density Fluctuations

- Emissivity is proportional to the electron density times impurity density, TGIS can help identify which is changing
- With TGIS, the network might be able to determine n_e, Z in addition to T_e (future work)



Adding Additional Diagnostics to the Network can Further **Enhance Performance**

- Adding line-averaged density from the FIReTIP diagnostic improves performance by ~50% in some simulations
- This might be available for a real-time diagnostic



1.2

Electron Temperature (keV) 70 0.0 80 0.1 90 0.1 10

0.0∟ 100

Actual Profile

110

With FIReTIP, $\epsilon_{RMS} = 45 \text{ eV}$

Without FIReTIP, $\epsilon_{RMS} = 71 \text{ eV}$

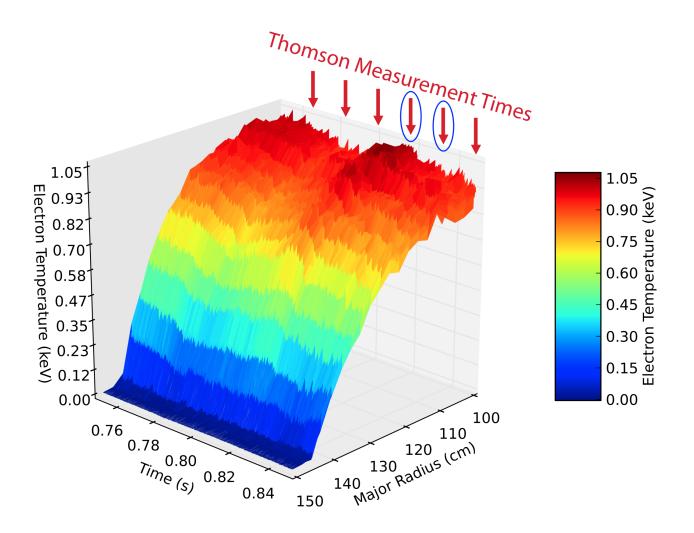
120

Maior Radius (cm)

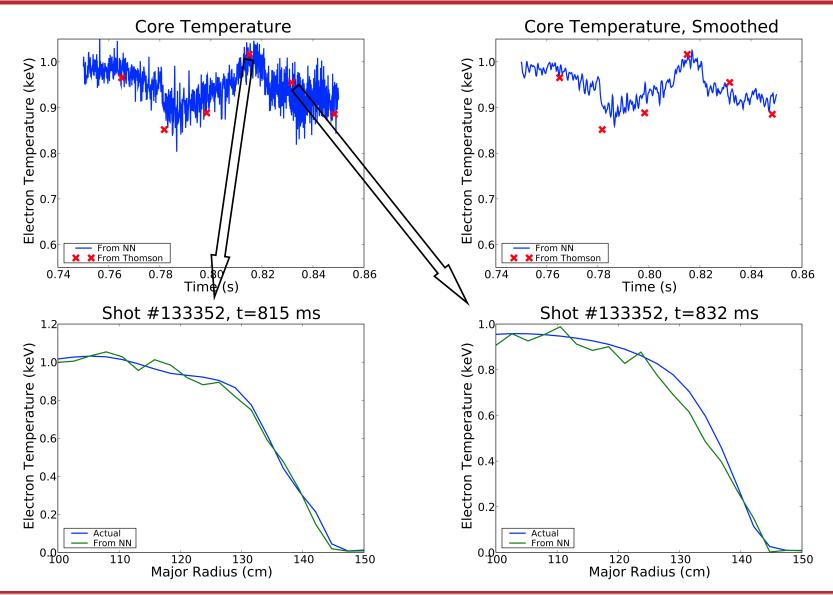
130

APS-DPP 2012 – ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)

First Test on Experimental Data Used Raw, Uncalibrated Data from Previous-Generation, Three-Array, Optical SXR Array



Trained on 32 Discharges, this Neural Network Produces Fast T_e Profiles in Agreement with Thomson Scattering



APS-DPP 2012 – ME-SXR based Electron Temperature Profile Reconstruction, D.J. Clayton et al. (10/31/2012)

Neural Networks have Proven Useful for Fast T_e Measurements and will be Further Investigated and Applied

- It has been demonstrated that neural networks can be used to calculate T_e from ME-SXR measurements
 - Training with larger datasets greatly improves results, and the number hidden nodes must be optimized for the highest accuracy without smoothing over radial features
 - One ME-SXR array is insufficient, though two arrays are adequate
 - Adding additional data to the network, such as TGIS and FIReTIP, further improve the accuracy of the results
- Future studies will include:
 - Tests to see if n_e and Z can also be found with additional arrays
 - Physics studies using real data

