

Supported by

The NSTX-U Thomson scattering diagnostic system

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U Nova Photonics ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado **U Illinois** U Maryland U Rochester **U** Tennessee U Tulsa U Washington **U** Wisconsin X Science LLC

B.P. LeBlanc A. Diallo, H. Feder, G. Labik, D.R. Stevens, R. Upcavage

54th Annual Meeting of the APS Division of Plasma Physics October 29 - November 2, 2012 Providence, Rhode Island

* Work supported by USA DoE contract DE-AC02-09CH11466

Culham Sci Ctr York U Chubu L Fukui L Hiroshima L Hyogo L Kyoto L Kyushu U Kvushu Tokai L NIFS Niigata L **U** Tokvo JAEA Inst for Nucl Res, Kiev loffe Inst TRINIT **Chonbuk Natl U** NFR KAIS1 POSTECH Seoul Natl L ASIPF **CIEMA FOM Inst DIFFER ENEA, Frascat** CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep

Office of

Science

MPTS Mission and Challenges on NSTX-U

- Thomson scattering arrangement for NSTX-U
 - New laser beam path needed to avoid wider center stack
 - Complex laser exit route needed to avoid new NBI box
 - New beam dump
 - Use existing collection components in order to save time and money
 - Improved in-situ calibration system
 - Implement hardware changes for future third laser
 - Install remote mirror control in laser-beam delivery optics
 - Develop plan for operation with T_e up 10keV
- Plasma physics coverage
 - Continue full profile measurements at equatorial plane
 - Both sides of magnetic axis and SOL
 - Emphasis on outer edge pedestal and ITB regions
 - Recent radial resolution upgrade to 42 channels is installed
- Plasma operation support
 - Develop plan for TS real-time feedback for plasma control

Twofold I_p and B_T **Increases and NBI Power** Wider center stack and second beam box

NSTX-U

Base Parameters for NSTX and NSTX-U Expect larger T_e up to 10keV

	Base NSTX	NSTX Upgrade		Base NSTX	NSTX Upgrade
R _{geom} (m)	0.854	0.934			
			NBI (MW)	6	12
a (m)	0.669	0.619			
A	1.27	1.50	HHFW (MW)	6	6
Ip (MA)	1.0 (1.5)*	2.0	T _e (keV) HHFW	≤ 6.25	≤ 10*
B _t (T)	0.55 <mark>(0.6)</mark> *	1.0	T _e (keV) Beam- Heated H-Mode	≤ 1.5	≤ 4*
T _{pulse} (s)	0.5	5.0	Estimate NF (2012	s from J. Mena	and submitted to

Numbers on the left: C. Neumeyer, et al. Symposium on Fusion Energy (SOFE) --June 1-5, 2009, *Achieved

- Two Nd:YAG lasers, aligned side-by-side on the equatorial plane, with a combined nominal time resolution of 60 Hz
- Total of 42 radial channels
 - 32 polychromators with 6 spectral channels
 - 20 existing plus 12 new polychromators
 - 10 polychromators with 4 spectral channels
- Automation ready in-situ viewing window calibration apparatus
- More details can be found elsewhere:
 - A. Diallo, B.P. LeBlanc, G. Labik, and D. Stevens, Rev. Sci. Instrum. 83, 10D532 (2012)
 - B.P. LeBlanc, A. Diallo, G. Labik, and D.R. Stevens, Rev. Sci. Instrum. 83, 10D527 (2012)

Laser-beam Path Circumvents New NBI Box

APS-DPP 2012 BPL P8_00037

New Laser-beam Path Steered away from New Center Stack

OSLO Ray Tracing shows that the fiber holder needs to be displaced by about 1 cm toward the mirror

Laser Flight Tube and In-situ Illumination Probe

Reinforced support structure

APS-DPP 2012 BPL P8_00037

Laser Input assembly and Illumination Probe

Redesign of the calibration probe assembly for MPTS with remote handling capability

 The long discharges of NSTX-U will require routine window calibration

Mirror (PM) optics collect the light scattered along the laser beam (LB) path and focus it at the "image" IM onto 36 fiber bundles

LB: Laser beam; TF: Toroidal Field Coil; PM: Primary mirror; FB: fiber bundles; AS: aperture stop; VW: vacuum window; PE: nominal plasma edge; FP: laser beam focus; R: major radius; CS: Center stack; IM: image

Separation made at output bundle output end

🔘 NSTX-U

APS-DPP 2012 BPL P8_00037

Results from Previous Fiber-Bundle Division

R=143.6 and R=144.5 cm

- One divided fiber bundle
 used since 2005
 - Bundle at R=140cm divided in two: R=143.6 and R=144.5
- Conjoint channels provide high quality data
- Partial TS profiles in vicinity of conjoint radial locations: (a) T_e; (b) n_e.
 - Profiles shown at six consecutive times.
 - Conjoint channels circled with dashed line

Experimental Data Confirm Low Major Radius Overlap

R=143.6 and *R*=144.5 cm

961 TS measurements 0.15 (a) during plasmas similar to 0.10 shown in previous slide ∆T_e (keV) 0.00 $\Delta T_{e} = T_{e}(R=143.6cm) -$ -0.05 $T_{e}(R=144.5cm)$ $0.00 \quad 0.05 \quad 0.10 \quad 0.15 \quad 0.20 \quad 0.25 \quad 0.30 \quad 0.35$ T_e (keV) 2.0 (b) 1.5 Δn_e (10¹³cm⁻³) $\Delta n_{e} = n_{e}(R=143.6cm) -$ 1.0 0.5 $n_{e}(R=144.5cm)$ 0.0 -0.5 As expected ΔT_e and Δn_e 3 2 n_{e} (10¹³cm⁻³) are > 0.0

WNSTX-U

Allocation of the12 New Polychromators

•	Inner edge: – 1 new bundle ITB region:	1 new polychromator @31.8 cm 5 new polychromators	(1) new poly(s)		
	- 2 new bundles	@86.4 and 112.5 cm	(2)		
	 – 2 new bundles – 3 split bundles 	[79.5,82.4]	(<i>Z</i>) (1)		
	_	[121.5,123.0]	(1)		
	_	[124.5,125.8] cm	(1)		
•	Pedestal: 5 new polychromators				
	 6 split bundles 	[134.9,136.0]	(1)		
	_	[137.2,138.3]	(1)		
	_	[139.4,140.4]	(1)		
	_	[141.6,142.5]	(1)		
	_	[143.6,144.5] existing split bundle			
	_	[146.4,147.8] cm (1)			
•	SOL: 1 new polychromator				
	 1 new bundle 	@154.61cm	(1)		

MPTS has a total of 42 radial channels Implementation of 12 New Radial Channels Complete

New 12-high polychromator tower 6-filter polychromator

PPPL "low readout noise" preamplifiers

Improved Spatial Resolution with 42 Channels

Reduced center-to-center spacing (dRcc)

Comparison T_e(R) 30 vs. 42 Channels

The existing 4-filter polychromator at position "A" has been replaced by one with 6 filters, and should produce smaller error bars – not presently reflected in the above figure.

Comparison n_e(R) 30 vs. 42 Channels

The existing 4-filter polychromator at position "A" has been replaced by one with 6 filters, and should produce smaller error bars – not presently reflected in the above figure.

Schematic Illustration of Major Radius Overlap

• Major radius overlap is caused by overlapping fields of view of the split fiber bundles – red and blue – with the laser beam.

Split fiber bundles – red and blue – imaged along laser beam path

• Same value of the major radius R being observed by both split bundles.

Whole fiber bundle imaged along laser

🔘 NSTX-U

Geometric Major Radius Overlap Evaluation

- dr0: major radius span for whole fiber bundles
- Evaluate major radius (R) at the hexagon vertices of upstream and downstream sub bundles and compute
 - dRup: upstream sub bundle R span
 - dRdw: downstream sub fiber bundle R span
 - dRct: geometric
 evaluation of R overlap

Scaled Drawings Split-bundle Field of View with distributed points

Statistical analysis based on 400 points per split bundles Upstream Compute histograms of R corresponding to these points 25 Histogram 20 ±1 sigma indicated with 15 vertical dashed lines 5 Crosstalk absent for 0 148 147 149 150 R (cm) ±1 sigma

Histograms of R for three consecutive fiber bundles viewing near R=150cm.

152

Downstream

151

Radial Span Overlap Estimates

- Major radius overlap between subbundles
 - Geometric estimate: 24-34% of R span of split bundle
 - Statistical estimate with 400 points per split bundle
 - ±1 sigma of R sampling shows no radial overlap
- Figure shows comparison of the three radial span calculations:
 - MPTS current estimates
 - Estimate based on hexagon extrema
 - Estimate based on even distribution (Sigma).
- The current calculation falls between the extrema and one-sigma evaluation.

Example of the Polychromators Filter Response

Thomson scattering system on NSTX has two types of polychromator

Relative temperature error scaling projection for NSTX-U Using existing polychromator filter sets

- Extrapolation to 10 keV yields ±11% with 6-filter polychromator and ±20% with 4filter polychromator
- Need to assign the 6-filter polychromator to plasma core measurements (now)
- Need to adjust filter array for more coverage on the "blue" side (in future)

Concluding Remarks - Future Work

- The hardware modification design is ongoing
- Installation will occur in fall of 2013
- Schedule MPTS ready date of March 2014
- The laser beam path has been re-aimed in order to avoid ablating the new center stack tiles
- The mirror collection optics will be refocused along new laser beam path
- We extrapolate to NSTX-U the error on the electron temperature in high performance discharges
 - Rearrange 4 filter polychromators to insure that they sample temperature less than 1 keV
 - Consider implementing a 7- or 8-filter polychromator?
- Ongoing work for ex-vessel in vacuum beam dump and calibration probe