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ABSTRACT:  "
"
CHI in STs offers considerable promise for generating startup 
plasmas, with NSTX experiments demonstrating coupling to 
Ohmic drive with magnetic flux savings [1]. Success in these 
experiments depends in part on the achievement of flux 
closure following CHI voltage crowbarring. Flux closure is 
demonstrated here in whole-device, resistive MHD 
simulations using the NIMROD code. In axisymmetric 
plasmas significant closure due to resistive effects requires 
the injection slot to be narrow (e.g. 4 cm vs. 11 cm) in 
agreement with experiment. In simulations reduction of the 
applied injector flux following the crowbar forms an X-point 
close to the bottom of NSTX that significantly enlarges the 
closed volume; closure is not seen if the flux is held 
constant. The physics of closure will be discussed and 
applied to maximizing the volume. Effects of a background 
plasma in simulations of flux formation and closure will also 
be described."
"
"
1R. Raman, et al., PRL 104, 095003 (2010). "
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Accomplishments and Status of work in progress 

•  The model used for CHI into NSTX compares well with experiment during the 
injection phase.  A power-supply model drives the injection 

 

–  Voltage across the injection gap 
–  Injected current –– measured from R*Bϕ at the gap 
–  Injected plasma and toroidal current and flux 

 
–  The model includes time evolution using NSTX time-dependent boundary 

conditions (including wall eddy currents) 
–  Ohmic heating and thermal conductivity (along open field lines) have been 

implemented 
–  Simulations show an n=1 mode 

 
•  Closure is observed in three cases 
 

–  During injection when ohmic heating inside the injected flux is weak 
–  “Fast” closure – when the applied voltage is rapidly reduced 
–  “Driven” closure – when the external, applied poloidal field evolves towards a 

divertor configuration and forms an X-point near the bottom of NSTX 
 

Closure during injection followed by “fast” reduction of voltage generates 
surfaces similar to those in the experiment  
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NSTX:  Shots shows expanding flux bubble"

 See R. Raman, et al. Phys. 
Rev. Letters 97, 175002 
(2006)"
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Boundary conditions for helicity injection"

•  Rate-of-change of toroidal flux –– equals Vinj – Vabs 

•  Absorber voltage –– determined by requiring the 
total vacuum toroidal flux to be constant, 
corresponding to a constant ITF 

•  Discharge (injector) current –– measured by the 
change in RBϕ just above the injector slot 

•  Toroidal flux –– carried in by ExB flow at the 
injector and out by ExB flow at the absorber 

 
•  Equating flows of vacuum toroidal flux yields 

! 

Er
abs = Er

inj rinj,min
rabs,min

dr
B"
r2B2rinj ,min

rinj ,max

#

dr
B"
r2B2rabs,min

rabs,max

#

This generalizes the model used in HIT-II: R.A. Bayliss, C.R. Sovinec, and A.J. Redd, Phys. Plasmas 18, 094502 (2011). 
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Previous simulations –– injection but no flux-
surface closure (last APS, ICC conferences)"

There was no flux-surface closure after the injection ended"
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Flux-surface closure has now been demonstrated"

Experimental results:"
"
• "Flux surfaces –– close in experiment during or following removal of injection voltage"
• "Closure is important for a start-up plasma –– toroidal current increases as inductive 

current drive is applied"
"
Simulation results:"
"
• "Flux surface closure –– observed in three cases"
"
"A)  Fast reduction of applied voltage –– low temperature plasma with radiation cooling"
"B)  Fast reduction of applied voltage –– high temperature without radiation cooling"
"     – "Closure starts during the injection phase"
"C)  Slow reduction of applied voltage –– closure driven by variation in external poloidal "
"     flux"
"     – "Closed volume is small –– leans against central column"

"
• "Fast reduction of voltage at high temperature generates the largest enclosed 

volume –– closest to the experimental observations"
""
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Simulation –– A narrow injection slot narrows the 
injected current – required for flux-closure "

Injection slot"

Finite elements generate 
additional resolution"

A narrow slot was found to be important in the experiment –– guided the simulations"

Current flow in flux 
bubble"

The narrow slot generates a narrow distribution of injected current"

Vertical current inside radius R at the bottom of the flux conserver"
Wide slot (11 cm)" Narrow slot (4 cm)"
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Simulations without Absorber Coils are a better model of 
the experiment than those with them 

ISSUE:  The absorber slot boundary condition requires an outward EXB flow"
"

ExB out-flow at the extractor slot –– generates plasma flows in plasma outside the 
flux bubble"
"
• "Absorber coils energized –– Problem as the bubble approaches NSTX top"
"

– "Flows forced to small R by absorber magnetic fields –– cross B-field to reach 
absorber"

– "Flows interact with bubble – Result – injector current not fully localized in 
surface layer"

"
• "Absorber coils not energized –– Flow reaches absorber slot along B"
"

– "Negligible interaction with bubble"
– "Injector and toroidal currents largely localized in the bubble"
– "Experimental problems with breakdown do not occur in simulations"
"
"
"

Conclusion:  Simulations without absorber coils are used in 
present closure simulators"
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High spatial resolution is required for accurate 
simulations"

Spatial resolution is 
improved by using finite 
elements within the grid"
"
Shown are comparisons of 
polynomial degree 2, 3, 4"
"
Flux surfaces with 
polynomial degree 2 did 
not close"
"
Conclusion:  High 
resolution is needed for an 
accurate simulation "
"
(Higher degrees have not 
been tested.)"

Simulations with fast closure, 
radiation cooling, and n=1 mode"



11"

Case A:  Flux surface closure at low temperatures"

An “atomic” radiation term was used to keep T < 100 eV"
"
• "The temperature dependence of the radiated energy 

approximated that of a low-Z impurity but without the 
possibility of “burnout”"

"
• "A model of oxygen including “burnout” has been added to 

Nimrod –– simulations have started using it"
"
"
A 4 cm injection slot and poly_degree = 4 were used for the 
following results"
"
• "The simulation time history is shown in the previous slide"
"
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Poloidal flux contour plots expand during injection"

7.0 ms" 7.5 ms" 8.0 ms" 8.5 ms" 9.0 ms"

Contour spacing 
Δψ ≈ 4.3 mWb"
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Poloidal flux closure starts within 10-s of 
microseconds after the voltage starts to drop (9 ms)"

t = 9.006 ms"

t = 9.060 ms"

Δψ ≈ 1.1 mWb	



Poloidal flux" Poincaré puncture plots"

No flux closure"

Flux closure starts along 
narrow neck of flux from 
the injector slot"
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Plasma flow reduction and flux surface closure"

t = 9.006 ms " t = 9.060 ms " t = 9.120 ms " t = 9.216 ms "

Poloidal flow-velocity vectors"
"
As injection voltage drops, 

flow drops allowing flux-
surfaces to pinch, 
speeding reconnection"

"
At low voltage, flow 

continues from outside the 
closed surface, carrying 
toroidal flux across the    
X-point into the surface"

"
Finally, flow becomes small 

and closed surface area 
grows before resistively 
decaying"



15"

Temperatures are low in flux plume ––  
  flux closure heats plasma locally"

t = 9.006 ms" t = 9.060 ms"

Magnetic diffusion"
"
"
"
"
"
"
Diffusion distance in 50 µs is"
"
"
"
Distances are similar to those in 
the plume"
"
Conclusion:  Resistive diffusion 
closes flux surfaces at these 
temperatures and dimensions"

Dm = 411 Te
3/2

! 5 m2 s  at 20 eV
! 40  m2 /s at 5 eV

!x " 0.01 m at 20 eV
" 0.04 m at 5 eV

5.4 eV"

15.3 eV"

4 eV"

12.1 eV"

20.3 eV"

25.5 eV"
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Case B:  Flux surface closure at high temperatures"

No atomic radiation in the simulation"
"
•   Temperatures well above 100 eV were generated"
"
"
"
A 4-cm injection slot and poly_degree = 4 were used as in 
the low-temperature simulation"
"
"
The simulation studied here was axisymmetric (no n=1 
mode)"
"
"
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High-temperature, flux-surface closure"

Comments on the structure in the currents:"
"
Closed flux surfaces form during the injection"
"

Before the upward bend in the toroidal current   
(t = 8.30 ms) –– a region near the nose of the 
flux bubble has closed surfaces"
"

After the bend ––closed volume increases but 
with two separated regions (next slide)"

"
Peak in the toroidal current and drop in injected 
current –– the inner leg of injected-current path 
moved away from the central column"
"
Noise in injected current (measured by RBφ above 
the injector slot), is apparently numerical.   Effect on 
flux-surface closure is uncertain.  "

• "Including an n=1 mode may reduce or prevent 
this noise"

"
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Flux-surface closure during injection"

t = 8.26 ms" t = 8.33 ms"

Flux-surface spacing: poloidal flux = 1.1 mWb; "
Total applied flux = 84 mWb"

Before t = 8.3 ms –  a single 
region of closed flux; afterwards, 
two regions"
"

• "Verified by field line tracing"
"
Temperatures are high (100-300 
eV) in the current channel at the 
surface of the flux bubble "
"
BUT – temperatures are low 
inside the bubble (10 – 30 eV) 
allowing closure to occur"
"
The total closed flux is ≈ 7 mWB, 
<10% of the total bias flux"
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Flux-surface closure following injection"

After injection voltage ends ––
closed-flux regions coalesce and 
grow somewhat in volume"
"
Enclosed poloidal flux (≈ 5 mWb) 
and toroidal current (estimated     
≤ 50 kA) are smaller than in NSTX 
experiment"
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Case C: Flux-surface closure driven by external flux changes 

Comments"
"
Closure verified by field-line 
tracing"
"
X-point in poloidal flux occurs 
after the (measured) injector 
current reaches zero.  The 
toroidal current has dropped 
below 40 kA"
"
X-point does not form if bias 
poloidal magnetic field is 
constant"
"
As toroidal current decays –– 
closed flux region leans on the 
central column and shrinks in 
volume"

Flux closure"
starts"
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Summary of flux-surface closure results 

Closure is seen in several simulations"
"
• "A narrow injection slot is required"
• "High spatial resolution is required"
"
The “fast voltage reduction, high-temperature” case compares the best to 
experiment"
"
Ongoing simulations include:"
"
• "Including the n=1 mode in high-temperature simulations"

"– "Needed to minimize numerical noise"
• "Using a better atomic radiation model to more fully determine effects of 

temperature on closure"
• "Exploring the physics of generating surfaces to enclose a larger fraction of 

the toroidal current"
– "Presently, much toroidal current flows outside the closed flux"
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Simulations with constant flux "

•  Simulations started with fixed boundary fields 
(including NSTX poloidal coil currents) for a narrow 
slot of 4cm. 

•  Two sets of simulations are performed, 1) at zero 
pressure and 2) including a pressure model 

•  Simulations at zero pressure (similar to Carl’s HIT-II 
simulations) started with a constant high voltage of 
1.3kV at 6ms which drops sharply at 9ms.    

•  Second set of simulations also include pressure and 
resistivity models and ohmic heating.  

Simulations are also being run to study the physics of 
flux closure with a simpler model than in the previous 
viewgraphs"
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Simulations at zero pressure  "

•  A simple waveform of injector voltage is used. High resolution of poly-
degree=3 is used.  

 Total and n=0 Tor. Current vs. t
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•  No flux  closure is obtained during the sharp decrease of the voltage at 9ms. !
•  A this voltage of 1.5 kV not enough large current is produced to pull up enough flux and cause closure with zero 

pressure mode (similar to HIT-II case). Simulations at higher voltage are underway.!

 t=9.1ms!   t=9.6ms!
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Simulations with pressure model "

Poloidal flux
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•  Similar voltage and boundary fields  are used with resolution of poly_deg=2.  However, higher total 

current is obtained with pressure.!

Total and n=0 Tor. Current vs. t
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 t= 9.1ms!

•   Small flux closure is obtained as shown in the puncture plot. This simulation  at 
higher resolutions poly_deg=3 is running.!
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Summary of simulations with constant 
flux"

•  Simulations with constant flux show a very small volume 
flux closure only when pressure model is included and 
voltage is sharply decreased.  For this case, higher 
resolution simulations are underway. 

•  Simulations at zero pressure similar to HIT-II so far  have 
not produced the flux pull-up and closure (at the voltage 
used).  Also, for this case, simulations at much higher 
voltage are underway. 
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Plasma outside the expanding flux bubble differs from 
the experiment 

MHD simulations include a plasma throughout NSTX that affects helicity injection"
"
Absorber-slot boundary condition imposes an outward flow –– supplied by flow from 
plasma throughout the machine"
"

• "Flows couple to current generation via Ohmʼs law"
• "Absorber-coil currents are zero to minimize effects of cross-field transport near the 

top of NSTX"
"
"
Bubble expansion compresses and bends magnetic field between it and the top of NSTX"
"

• "Unconstrained plasma temperature –– strong currents generated locally"
• "Local plasma heating ––currents increase (“run-away” to high T)"
• "“Run-away” current densities can be comparable to injected and toroidal currents in 

the bubble"
Partial “fix”:"
• "Temperatures in several grid rows near the top are held at background value to 

minimize flow-generated currents"
• "Temperature increases limited outside the flux bubble"
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Good news: Plasma expansion is determined by the 
injected toroidal flux – weak external temperature effects 
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In the absence of magnetic 
reconnection, injected toroidal 
flux is proportional to helicity"
"
External plasma has only a 
small effect on the toroidal flux"
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Plasma outside the expanding flux bubble affects 
toroidal current generation 

In the experiment – ionization, radiation, and other effects limit plasma 
temperature"
"
• "In the calculation shown here we “clamp” external temperatures"

Perturbed magnetic field –– generated by 
plasma-flow and diffusion"
"
"
"
"
At 0.2 eV, diffusion dominates (η ~T–3/2) 
	



At 2 eV, flows are more concentrated and 
dominate field evolution"
  "
External temperature in the experiment is not 
known"
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Summary of external plasma effects 

Plasma flows and currents are generated in the plasma outside the flux 
bubble"
"
• "Injection is not significantly affected –– the flux bubble forms and closure 

occurs"
"

• "However –– these flows and currents change details of the injection history"
"
"
The effects of these flows and currents have been minimized by:"
"

• "Maintaining a low temperature at the top of the machine near the absorber slot"
"

• "Turning the absorber coils off"
"

• "Preventing temperature excursions in the external plasma"
"
"
Further effort is planned to fully minimize the effects of the external plasma"


