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Fast ions excite a broad spectrum of The hfCAE have only been seen in H-modes
modes on NSTX with flat or hollow density profiles
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Some characteristics of co-propagating CAE Poloidal structure and polarization of hfCAE two bands is qualitatively different
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Toroidal array of poloidal and toroidal Mirnov Fast ions satisfying simple resonance A simple dispersion relation for the CAE is Here, all solutions are deeply trapped, Solution of simple dispersion relation
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A spectrogram of the rms hfCAE
amplitude shows the frequency of the bursts
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The onset of phase locking can be seen very
clearly by overlaying hfCAE bursts and kink

Strong correlation of CAE bursts with kink Bursts are not entrained in kink, as was
suggest that CAE stability is modulated by kink. previously seen with TAE

The strong correlation between the CAE burst frequency

The hfCAE are, like most fast-ion modes
on NSTX, a sequence of short bursts

- T : P NSTX 139317 . _ ' - -

The strong bursts in the beginning occur simultaneously | . RmS of mode S * Inlower panels hfCAE _ *“| T HOAE ] and the n=1 kink mode are seen by comparing the Mode amplitude is modulated globally, by the kink plus
_ , : | . ool E . non-axisymmetric perturbation?
for all modes. amplitude in lower % | S g e bursts are at first £ n=13 ! relative phase. | | | |
This is preceded and followed by the more typical, short figure, spectrogram X200 g g T uncorrelated with kink. T2°F The phase is nearly constant for > 40ms, although it :c\ilresfcavzl)l(’l?-symmetry breaking mechanism, .g:, error field,
period bursting barely visible in this spectrogram of rms is above. S | N Z_ég_g;;g;g | |- Later, when kink §1Z wanders over a range of about 90°. | HN - 60°,180°.300°  NSTX 139317, 0.24s
Burst of the 20( Aaitatts A NSO MY | L Most of the spectral il 'y - | Tre?uerlw,céglrzogs ntear g ¢ Strong correlation ———————————smuseu |+ Filtered bursts are
_ ] "™ K isin | w | natura urs ImplleS direct plitude (G) : shown at three

multiple e POWET IS In IoW frequency, bursts are - i i
modes are ol R, frequencies, but d Y Kink modulation of CAE Burstamplitude (a.u) toroidal locations,

QL ’ strictly phase locked 1| stability by kink. AN SR L S s separated by 120°

there is a modulation  103:

T T T T T

correlated:

&
~ W|th k|nk . . = ink frequenc z =
possibly > of the burst 80 | There is no shift of the N /|  scaledfor
- 60 - FEarlier, weak — s s relative phase of burst. “ i aesthetics.
through some 033 frequenCy at the 40 modulatlon Of bUI’St .24_ 0.26 0.28 0.30 _ p ‘ E — IBurlst freqtljencl:y (I.<Hz). | — oW ;
non-linear S frequency of the kink 23 , , , WMHZ (hfCAE) with toroidal angle' g L R BN Similar
I I 0.18 0.20 0.22 0.24 0.26 frequency can be : : : 3 e i
coupling mode (red dashes). Time (s) Is interaction between ° : synchronous

meChan|Sm ] rOtat|ng k|nk and -90 Relative Phase between Kink and Bursts 2 behaV|Or seeéen

| 1 1

stationary error field " T om om0z 080 '
y N poloidally. o

responsible? | Time (ms)

Simulation with damping modulated
by 2% captures burst frequency

« The effect in this example is weak; there are
clearer examples.

seen in shape of CAE W
bursts. i |

> < 1.2ms ——»

Burst-frequency capture by kink seen
iIn modified Predator-Prey type model

...later, hfCAE bursts are less well defined

Initially hfCAEs burst nearly synchronously... Summary of observations
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frequency, and hfCAE bursts can become synchronized with kink mode.
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