Advancing High Current Startup via Localized Helicity Injection in the Pegasus Toroidal Experiment

Edward Thomas Hinson on behalf of the Pegasus Team

University of Wisconsin-Madison APS-DPP

Denver, CO Nov. 11-15, 2013

PEGASUS Toroidal Experiment

Pegasus is a Compact, Ultralow-A ST Developing Localized Helicity Injection Start-Up

Local Helicity Injectors

- Current injected along field lines
- Unstable current streams relax towards Taylor minimum energy (tokamak-like) state
- Consistent with helicity conservation

E. T Hinson, 55th APS-DPP, Denver, CO, Nov. 11th-15th, 2013

Achievable I_p Constrained by Helicity Balance, Taylor Relaxation

• Taylor Relaxation:

$$I_p \leq \left[\frac{C_p}{2\pi R_{INJ}\mu_0}\frac{\Psi I_{INJ}}{w}\right]^{\frac{1}{2}}$$

with:

A_p, *A_{inj}*: Plasma, injector area
C_p: Plasma circumference
Ψ: Plasma toroidal flux
w: Edge current channel width

• Helicity Balance:

$$I_{p} \leq \frac{A_{p}}{2\pi R_{0} \left\langle \eta \right\rangle} \left(V_{ind} + V_{eff} \right)$$

with:

$$V_{eff} \approx \frac{A_{inj}B_{\varphi,inj}}{\Psi}V_{inj}$$

• Experiments on Pegasus confirm $I_p^{max} \propto I_{ini}^{1/2}$, $I_{TF}^{1/2}$, $w^{-1/2}$

E. T Hinson, 55th APS-DPP, Denver, CO, Nov. 11th-15th, 2013

Battaglia et al., Nucl. Fusion 51, 073029 (2011)

Current Growth During LHI Correlated with Bursts of MHD Activity

- Measured burst properties include
 - Two primary spectral components
 - n = 1 : 10–20 kHz @ R_{inj}, line-tied kink
 - n = 0: < 5 kHz, plasma motion
 - Correlation with sharp I_p jumps

- NIMROD simulations produce bursty MHD
 - Bursts from transient reconnection events
 - Qualitative agreement with experiment

NIMROD Simulations Suggest Detailed Mechanism for LHI Current Drive

- Coherent current streams reconnect and inject axisymmetric current rings into core plasma
 - O'Bryan, this session

Fast camera image of axisymmetric plasma ring, formed at an LHI-MHD burst

 Ringlets observed intermittently at early startup phase

Strong Reconnection-Induced Impurity Ion Heating Observed during LHI in Pegasus

- NIMROD shows magnetic reconnection during LHI
 - Ion heating widely observed in reconnection experiments
- Consistent with ion cyclotron heating mechanism
 - LHI MHD spectra show significant power in IC resonance region

M. G. Burke, Thurs. AM Poster Session, TP8.00020

THE UNIVERSIT

Energy/Helicity Model Reproduces I_p(t) in LHI Discharges

 Lumped parameter model + helicity conservation

$$- I_p \left[V_{eff} + V_{PF} - V_{geo} - V_R \right] = 0$$

- Inputs: $R_0(t)$, $I_p(0)$, η_0 , $\kappa(t)$, $\delta(t)$, a(t), $\ell_i(t)$
- Analytic low-A descriptions of $\ell_e, B_z, V_{eff}(t)$
- Initial tests give reasonable I_p(t)
 - Code validation and detailed experimental tests required
 - Validation via reconstructions ongoing
- Most drive during LHI appears to be from geometric/poloidal induction

E. T Hinson, 55th APS-DPP, Denver, CO, Nov. 11th-15th, 2013

MA-Class Startup in Large Experiments Requires Helicity Drive to Dominate

NSTX-U:

I_p [MA]

- Need $V_{eff} > V_{geo/PF}$
 - NSTX-U/FNSF-relevant regime (~1 MA)
 - In Pegasus, occurs at 300 kA
- NSTX-U ~1 MA regime at 2-4x Pegasus injectors
 - $A_{inj} \propto V_{inj}^{-1}$
 - Final design dependent on further injector development
- Physics test requires increased V_{inj}, A_{inj} measurements on Pegasus

Pegasus:

Applying High Current/Voltage in Edge Region is Formidable Challenge

- Injector requirements include
 - Large A_{inj} , J_{inj}
 - V_{inj} > 1 kV
 - Multi-MW power input
 - $-\Delta t_{pulse} \sim 10\text{--}100 \text{ ms}$
 - Minimize PMI
 - ...all adjacent to tokamak LCFS
- Explored injectors/power system designs*
 - ~3x improvement in V_{inj}, Δt_{pulse}
- Answer: integrated arc injector array
 - Present focus on increasing V_{inj}

E. T Hinson, 55th APS-DPP, Denver, CO, Nov. 11th-15th, 2013

Frustum-shaped cathode injectors mitigate PMI

Integrated Arc Injector Array will Facilitate High V_{eff} Test in Pegasus

- Integrated 8-injector array in fabrication
 - 16 cm² array with internal uniform gas distribution
 - Will test helicity-dominated regime needed for NSTX-U / FNSF

E. T Hinson, 55th APS-DPP, Denver, CO, Nov. 11th-15th, 2013

LHI Extends Available V-s for Pegasus Discharges

- Increased V-s supports physics campaigns
 - Confinement/edge stability studies
 - H-mode studies
 - High β_T studies

• While still under development, LHI is routine operations tool

Significant Progress Towards MA-Class Helicity Injection Startup

- Helicity balance/Taylor relaxation place limits on max I_p
- Predictive modeling of HI discharge physics progressing
 - NIMROD simulations elucidate current injection physics
 - Lumped parameter model provides predictive $I_p(t)$
- Tests of types and geometries of electron current injectors
 - Most attractive option is a multi-injector plasma arc array
- Next steps: Increase PMI suppression/voltage standoff, test large-area integrated injector array
 - Allows access to NSTX-U relevant regime ($V_{eff} > V_{inductive}$)

Posters: Thursday Morning Poster Session, TP8.00017-24

Talk available at: http://pegasus.ep.wisc.edu/Technical_Reports/APS_DPP.htm#APS13

