Simulation of current-filament dynamics and relaxation in the Pegasus ST

J.B. O'Bryan and C.R. Sovinec

University of Wisconsin-Madison

55th Annual APS-DPP Meeting November 12, 2013

Fluid-based computation predicts that current filament merger and reconnection is an important process for non-inductive startup with localized helicity injection.

- Introduction
- Computational Model
- Current Filament Merger and Reconnection
- Poloidal Flux Development
- Plasma Symmetrization
- Summary and Conclusions

Localized helicity injection (LHI) is being investigated as a means of non-solenoidal startup on the Pegasus ST.

- A collaboration between Pegasus and NSTX-U is charged with developing and implementing a 1 MA LHI startup system on NSTX-U. (NSTX-U Research Plan 2014-2018. §11.2.27.)
- While the initial helical and final symmetric plasma states are well diagnosed in the experiment, the dynamics of the relaxation process have yet to be directly observed.
 - Diagnostics that provide multidimensional information (e.g. visible light) are unable to temporally resolve the helical filament interactions.
 - Visible light images, in particular, may not be representative of the magnetic field structure throughout the relaxation process.
 - Magnetic diagnostics resolve fluctuations temporally, but are incapable of spatially resolving fine-scale structure.

Visible light images of discharges formed using two injectors mounted in the lower divertor. (Eidietis, et. al. *J. Fus. En.* 2007.)

Our computations solve the low-frequency two-fluid model starting from vacuum magnetic field and 'cold fluid.'

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{v}) = 0$$

$$p\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = \mathbf{J} \times \mathbf{B} - \nabla p + \nabla \cdot (nm\nu \underline{\mathbf{W}}) \quad \text{where} \quad \underline{\mathbf{W}} = \nabla \mathbf{v} + \nabla \mathbf{v}^{T} - (2/3) (\nabla \cdot \mathbf{v}) \underline{\mathbf{I}}$$

$$\frac{2n}{3} \left(\frac{\partial T_{e}}{\partial t} + \mathbf{v} \cdot \nabla T_{e}\right) = -nT_{e} \nabla \cdot \mathbf{v} - \nabla \cdot \left[\kappa_{\parallel e} \hat{\mathbf{b}} \hat{\mathbf{b}} + \kappa_{\perp e} \underline{\mathbf{I}}\right] \cdot \nabla T_{e} + n\sigma (T_{i} - T_{e}) + \eta J^{2}$$

$$\frac{2n}{3} \left(\frac{\partial T_{i}}{\partial t} + \mathbf{v} \cdot \nabla T_{i}\right) = -nT_{i} \nabla \cdot \mathbf{v} - \nabla \cdot \left[\kappa_{\parallel i} \hat{\mathbf{b}} \hat{\mathbf{b}} + \kappa_{\perp i} \underline{\mathbf{I}}\right] \cdot \nabla T_{i} + n\sigma (T_{e} - T_{i}) + \underbrace{Q_{i}}_{\text{heat source}}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \left[\eta \mathbf{J} - \underbrace{\frac{\eta \lambda_{inj} \mathbf{B}}{\mu 0}}_{\text{current source}} - \mathbf{v} \times \mathbf{B} + \frac{\mathbf{J} \times \mathbf{B}}{n_e e} - \frac{\nabla p_e}{n_e e} \right] = 0 \qquad \text{where} \quad \mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$$

- The computations model the whole evolution of the current filaments using realistic, evolving, locally computed transport coefficients.
- Only the helicity injector current and heat sources are prescribed: all dynamics follow self-consistently from the model above.
- Neutrals, ionization, and recombination are not modeled.
- The NIMROD code (nimrodteam.org) is used to solve these systems.

Like the experiment, the only source of current drive during the formation phase is the helicity injector.

source half-max (blue) and $\mu_0 J_{\parallel}/B = 1~{
m m}^{-1}$ (red) at $I_p \approx 1~{
m kA}.$

 $\mu_0 J_{\parallel}/B = \pm 6 \ \mathrm{m}^{-1}$ at $I_p pprox 6.5 \ \mathrm{kA}$

- Initially, current streams along the vacuum magnetic field lines establishing a helical current channel.
- After localized reversal of the poloidal magnetic field, the attractive Lorentz force between adjacent passes is sufficient to drive magnetic reconnection (indicated by the presence of a reversed current sheet).
- A transit of the current channel tilts into the horizontal plane and is released, converting helical flux from the source into poloidal flux.

Computation shows concentration of poloidal flux where a current ring forms.

The tilting of a transit of the filament into the horizontal plane constitutes dynamo-like activity that affects the global distribution.

- Correlations of toroidally asymmetric fluctuations lead to mean electric fields that increase that increase the energy density in the mean field when $\langle \mathbf{E} \rangle \cdot \langle \mathbf{J} \rangle < 0.$
- The MHD dynamo effect (left) transfers the bulk of the energy to the ring.
- The Hall dynamo effect (right) acts on a scale smaller than the ring.

After a poloidal field null forms near the central column, a hollow current shell forms around a region of amplified flux.

- The current on the inboard side is initially diffuse, but coalesces into a coherent channel (left) as *I_p* increases.
- A large region of significant poloidal flux amplification (right) has developed over many relaxation events.
- Even late in time, the plasma retains its filamentary structure during active helicity injection.

A synthetic Mirnov array at the outboard midplane records magnetic fluctuation amplitudes ($\delta B/B_0 \sim 5\%$) and cross power spectra consistent with experimental observations.

Computational Results

- The computations have a more gradual rate of helicity injection than the experiment, so comparisons focus on **after** global poloidal field null formation (indicated by the red lines).
- $\bullet\,$ The MHD activity (\sim 10 kHz) corresponds to the reconnection event and abrupt change in current channel winding.

As LHI plasmas are intended to transition to other forms of current drive, the ability to relax into a configuration with closed flux surfaces is critical.

LHI driven phase

decay phase

- Closed flux surfaces form rapidly and encompass a large plasma volume after cessation of current drive.
- The current profile of the relaxing plasma remains hollow, but the pressure profile relaxes to a centrally peaked configuration.

Summary and Conclusions

- The release of current rings from helical filaments provides a new phenomenological understanding for filament relaxation in Pegasus.
 1 2
- The current filament dynamics, predicted to be important for LHI startup, are not readily apparent from visible light spectroscopy.
- The MHD activity observed with the synthetic Mirnov diagnostic is consistent with experimental Mirnov observations.
- Measurements from new magnetic sensor currently under construction will assist in validating this model.
- The current rings provide the mechanism for poloidal flux amplification over multiple reconnection events, resulting in a plasma suitable for transition to other forms of current drive.

¹J.B. O'Bryan, C.R. Sovinec, and T.M. Bird. *Phys. Plas.* 2012.

²J.B. O'Bryan and C.R. Sovinec. UW-CPTC Report 13-6. Submitted to PPCF. 2013.