

Supported by

Science

The dependence of discharge performance on pre-discharge lithium evaporation in high triangularity H-mode discharges in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

R. Maingi, S.M. Kaye, T.H. Osborne, and the NSTX Team

55th Annual Meeting of the Division of Plasma Physics **American Physical Society** Denver, CO: 11-15 November 2013

PRINCETON

LABORATORY

PLASMA PHYSICS

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINIT Chonbuk Natl U NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Office of

Power and particle exhaust a key challenge for future devices

 Liquid metals are being studied at PPPL as an alternative to solid PFCs for future devices

- NSTX used lithium wall coatings (evaporative and liquid) to test the efficacy of lithium in particle and power exhaust
 - Lithium enables reduced recycling from PFCs
 - Lithium will be important research line in NSTX-Upgrade, which is scheduled to commence operation in FY2015

Plasma characteristics and stability improved with increasing lithium evaporation in strongly shaped NSTX discharges

- Lithium evaporated before each discharge
 - Amount scanned, as in weakly shaped discharge studies
 - No liquid lithium divertor results in this talk
- Global characteristics changed
 - Recycling: \textbf{D}_{α} declined in all measured views
 - Energy confinement (τ_E , H-factor) improved
 - When discharges were ELM-free, radiated power increased with time (we developed several techniques to ameliorate this problem)
- Edge n_e, T_e, pressure profiles changed
 - Reduction in edge n_e gradient changed edge P', improving stability in weakly shaped discharges; likely to be similar here
 - 1. Effect on individual discharges
 - 2. Trends vs pre-discharge lithium
 - 3. Effect on profiles

New dataset from highly shaped plasmas as envisioned in NSTX-U, and for future STs

APS DPP 2013 Meeting – Maingi NSTX lithium – JO4.04

LITER deposition centroid relatively far from outer strike point in lower triangularity discharge

5

Performance of strongly shaped discharges improved with lithium conditioning, similar to weakly shaped ones

- Duration extended
- Reduced P_{NBI}
- Reduced dN/dt
- Comparable stored energy
- Comparable confinement
- Increasing P_{rad}
- Reduced recycling, long small ELM phase

Performance of strongly shaped discharges improved even more with increased lithium, similar to weakly shaped ones

- I_p duration not quite
 optimized with higher lithium
- Reduced P_{NBI}
- Reduced dN/dt
- Comparable stored energy
- Higher confinement
- Increasing P_{rad}
- Reduced recycling, long ELM-free phases

D_{α} decreased with increasing pre-discharge lithium evaporation in all data

- Transition from high to low recycling in lower (active) divertor occurred at lower evaporation levels in highly shaped discharges than weakly shaped ones
- Comparable trends in upper divertor recycling

8

${\rm D}_{\alpha}$ and neutral pressure decreased, and H97L increased with increasing pre-discharge lithium evaporation in all data

9

Edge profiles change markedly with increasing lithium in strongly shaped discharges, as in weakly shaped ones

ov 2013 10

Density profile modification similar in strongly and weakly shaped discharges

Trend of improving discharge performance with increasing lithium observed in highly shaped plasmas

- Recycling and neutral pressure decreased with increasing lithium
- Energy confinement increased and edge stability improved with increasing lithium
 - Discharge improvement was not unilateral; more ELMs and other transients, less reproducibility than in scans in weakly shaped plasmas
- Detailed transport analysis (TRANSP), pedestal profile and stability analysis in progress

> Role of v^* being assessed

• To do: compare with data from Liquid Lithium Divertor

ELMs eliminated gradually during original experiment

ELM evolution similar but ELMs never quite completely eliminated during new experiment

Divertor D_a

🔘 NSTX-U

Lithium reduced recycling and improved confinement of both strongly and weakly shaped discharges

Similar effects on discharges observed with weak and strong shaping

- Duration extended
- Same and lower P_{NBI}
- Reduced dN/dt
- Higher stored energy
- Higher confinement
- Increasing P_{rad}
- Reduced recycling, long ELM-free phases

Similar effects on discharges observed with weak and strong shaping

11-15 Nov 2013 18

Lithium improved performance of strongly shaped discharges, similar to weakly shaped ones

- Duration extended
- Same P_{NBI}
- Reduced dN/dt
- Higher stored energy
- Higher confinement
- Increasing P_{rad}
- Reduced recycling, long ELM-free phases

Similar effects on discharges observed with strong and weak shaping

Edge profiles change markedly with increasing lithium in weakly shaped discharges

At high lithium deposition, pressure and stored energy increase with P_{NBI} in strongly shaped discharges

Edge stability limits pushed beyond global stability limits with lithium coatings in NSTX

23

New data taken in highly shaped plasmas has higher LITER deposition near outer strike point

Neutral pressure decreased with increasing lithium; Li-I light and H_{H97L} increased, but H97L trend may be weaker

Energy confinement increased and edge electron transport decreased with pre-discharge lithium evaporation

Edge ion transport increased

R. Maingi, PRL 2011, NF 2012; S. Kaye, NF 2013

TRANSP

Dependence on v^* even stronger when ρ^* variations considered

- Express confinement scaling in terms of dimensionless parameters
 Ωτ_E = Bτ_E = ρ^{*α} f(ν, β, T_e/T_i, κ, q,) where α = -2 for Bohm and α = -3 for
 gyroBohm scaling
 - NSTX HeGDC+B discharges found to be consistent with gyroBohm (Kaye, 2006)
- For the Li scan, B, q, $<\beta>$, κ , a ... constant for all discharges

Normalize τ_E further by $\rho^{*\alpha}$: test both Bohm and gyroBohm

SOLPS interpretive simulations indicate particle fueling source from recycling was reduced with lithium

- Target recycling coefficient varied to • match peak divertor D_{α}
- Separatrix position adjusted as needed • to match divertor peak heat flux
- Radial profile of D_{eff} , χ_e^{eff} , χ_i^{eff} varied to • match midplane n_e , T_e , T_i , for the computed recycling source profile

SOLPS

0.85

0.9

 Ψ_N

Particle source (10²² /m³/s) .0 .5 .5

0

0.8

APS DPP 2013 Meeting – Maingi NSTX lithium – JO4.04

J. Canik PoP 2011

0.95

 Ψ_{N}

Recycling and edge transport changes interpreted with SOLPS simulations

- Pre-lithium case shows typical barrier region inside separatrix
- Change in n_e profile with lithium from
 0.95<ψ_N<1 consistent with drop in fueling at ~ constant transport
- Spatial region of low transport expanded with lithium
 - Low D_{\perp}, χ_e persist to inner boundary of simulation ($\psi_N \sim 0.8$)

Spatial extent of low D, χ_e region expanded continuously with increasing pre-discharge lithium

ELM elimination was not quite monotonic

ELMy discharges closer to kink/peeling stability boundary than ELM-free ones but ideal growth rates low: why instabilities not stabilized by diamagnetic flow?

What is the role of lithium? To reduce recycling and associated fueling

 ψ_{N} from 0.95-1 (recycling region)

 ψ_N from 0.8-0.94

Transport barrier widens continuously with increasing predischarge lithium, i.e. pedestal-top D, χ_e reduced

3D external fields used to trigger ELMs, while "Snowflake Divertor" used to reduce edge impurity source

🔘 NSTX-U

T_e, T_i increased and edge n_e decreased with lithium; T_i and Z_{eff} offset so pressure profile followed P_e

APS DPP 2013 Meeting – Maingi NSTX lithium – JO4.04