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Outline 

• Review of changes to edge plasma with lithium 

 

• Gyrokinetic calculations of edge stability towards 

understanding the effects of lithium 

 

• Pedestal-top is microtearing unstable without lithium, stable 

with 

– Stabilized by density gradient 

 

• Near-separatrix region is unstable to ETG, more strongly 

with lithium 

– Nonlinear simulations suggest ETG may be experimentally relevant 
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Type I ELMs eliminated, energy confinement improved with 

lithium wall coatings 
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Without Li, With Li 

 

 

ELM-free, reduced 

divertor recycling 

 

Lower NBI to avoid β 

limit 

 
Similar stored energy 

 

 

H-factor 40% 

 

H. Kugel, PoP 2008 

R. Kaita, IAEA 2008 

M. Bell, PPCF 2009 

Top of pedestal (ψN~0.8-0.95) 
ne and Te gradients 
increase with lithium 
Improvement in global 
confinement 

 
Near-separatrix (ψN~0.95-1) 

ne and its gradient are 
reduced with lithium 
Te profile is unchanged 

Reduced 
pressure gradient 
 ELM 
stabilization 
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Microstability of the NSTX pedestal with/without lithium is 

studied with GS2* 

• Local, linear microstability examined with GS2 code 

– Fully electromagnetic, with collisions (pitch-angle) 

– Kinetic electrons, D and C6+ ions 

– Kinetically constrained equilibria consistent with profiles & Jbootstrap 

*M. Kotschenreuther et al, Comput. Phys. Commun. 88 (1995) 128. 

• Applicability of local approach is 

limited at edge 

• OK at pedestal top for ion scales, and 

everywhere for electron scales (L/e>>1) 

 Results presented here 

• Global simulations clearly needed in steep 

gradient region (L/i~5) 
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Microtearing is dominant at pedestal top without lithium 

• Mode type ID’d by eigenfunction structure, 

real frequency, parameter dependence 

• Various low-k modes (ks1) are unstable 

across the edge 

– Core (N<0.9) 

• ITG dominant, E small 

– Within pedestal (N~0.96) 

•  reduced, ~ E (TEM-like with KBM 

signatures) 

– Pedestal top (N~0.93) 

•  large, >> E (Microtearing) 

• Microtearing unstable region corresponds 

to break in Te 
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MT 

TEM/ 

KBM 
ITG 

E 

Canik, NF ‘13 
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Stabilization of pedestal-top microtearing modes with lithium 

correlates with reduced transport region in experiment 
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TEM 

 

 

• From  = 0.8-0.95 ne increased with lithium 

– Increased ne stabilizing to MT (strongest 

parameter dependence) 

– TEM becomes dominant, reduced  closer to E 

 

• e inferred from SOLPS modeling1 of 

experiment is reduced in this region 

ne stabilization of MT contributes to improved 

energy confinement with lithium? 

– Similar picture from MAST analysis2  

– Needs nonlinear simulations to quantify 

– Confinement improvement region is broader than 

where MT are stabilized 

– Physics behind change in ne profile unknown 

E 

MT 

1Canik, PoP ‘11, 2Dickinson, PRL ‘12 
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ETG modes are unstable near the separatrix 

• ETG calculated to be unstable 

for N > 0.95 both without and 

with lithium 

• Growth rates significantly 

higher with lithium 

– a/Lne is reduced, while a/LTe is 

unchanged 

– e increases from ~1.5 to ~2 

 

• Could play a role in keeping Te 

profile clamped at edge 

– Important for P-B stability 

– Linearly picture holds 
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ks  10.0 

Without Lithium 

With Lithium 

 

 

 

 

 
Expt 

N=0.97 
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Nonlinear simulations indicate ETG heat flux may be 

significant with lithium 

• Electrostatic, adiabatic ion simulations, including collisions and ExB 

• Without lithium (high density gradient), ETG heat flux is very small 

• With lithium, at nominal electron temperature gradient, ETG gives ~1/3-
1/2 experimental electron heat flux 

• With a/LTe increased by ~20%, ETG can provide entire experimental flux 

• Similar flux level found out to radius of N=0.99 
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Expt. 

N=0.97 
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Summary/conclusions/future work 
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• Two important edge regions identified by 2D interpretive 

modeling of NSTX discharges without and with lithium 

– Near-separatrix (N>0.95): Te clampedpressure gradient reduced with 

density when lithium is deposited (important for ELM stability) 

– Pedestal-top (N~0.8-0.95): transport reduced with lithium (contributes to 

energy confinement increase) 

• Microtearing is dominant at pedestal-top without lithium 

– Stabilized by the increased density gradient with lithium 

– Could contribute to increased confinement with lithium->need nonlinear 

simulations 

• ETG is destabilized near separatrix with lithium 

– Could play a role in observed Te stiffness 

– Nonlinear simulations yield fluxes near experiment 

• Changes to density gradient with lithium play key role 
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EXTRA SLIDES FOLLOW 
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Microtearing is dominant at pedestal top without lithium 

• Mode type ID’d by eigenfunction structure, 

real frequency, parameter dependence 

• Four spatial regions evident without 

lithium 

– Pedestal foot (N>0.98) 

•  is large, >> E (KBM-like) 

– Within pedestal (N~0.96) 

•  reduced, ~ E (TEM-like) 

– Pedestal top (N~0.93) 

•  large, >> E (Microtearing) 

– Core (N<0.9) 

• ITG dominant, E small 
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Density gradient is stabilizing to MT modes dominant at 

pedestal-top without lithium 

• Increasing a/Lne stabilizes MT 

– TEM becomes dominant, with 

reduced  

• If magnetic geometry is held 

fixed, KBM onset occurs at 

high a/Lne 

• With pressure gradient in 

geometry scaled consistently 

– No KBM onset 

– a/Lne  continues to be 

stabilizing 

– Growth rate strongly reduced 

at a/Lne of discharge with 

lithium 

• Decreasing collisionality is 

weakly destabilizing at these 

parameters 
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MT 

TEM 

KBM 

d/dr constant 

d/dr scaled with a/Lne 

w/o Li w/ Li 

N=0.93 
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Nonlinear calculations performed to test if ETG transport is 

significant near experimental parameters 

• Electrostatic, adiabatic ion simulations 

• Collisions and ExB shear included 

• Simulations run out to quasi steady state 

• Resolutions checks performed to ensure heat flux is converged 

• Transport peaks at rather high ky due to distortion of flux tube 

near separatrix 
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Increasing a/LTe 
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Peak pressure gradient moves inwards, p’ and j reduced 

outside ψN~0.95 

3            4            5            6            7            8 
Normalized Pressure Gradient ()  
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R Maingi, PRL 2009 
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Mode type identified by eigenfunction structure and real 

frequency 

• Instabilities calculated over wide 
range of ks 

– For now focus on ion scales (ks1) 

– Identify most unstable mode at each 
radius 

• ITG/TEM 
– Twisting parity (A|| odd) 

– Re[A||] and Im[A||] have opposite 
sign 

– Real frequency determines ITG vs 
TEM 

• Microtearing 
– Tearing parity (A|| even) 

• KBM 
– Twisting parity (A|| odd) 

– Re[A||] and Im[A||] have same sign 

 

• Mode ID has been confirmed via 
parameter scans to test for 
expected scaling 
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N=0.93 

0.95,0.97 

ITG 

MT 

KBM 
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Radial profile of maximum low-k growth rate, freq 

• Four spatial regions evident without 

lithium 

– Pedestal foot (N>0.98) 

•  is large, >> E (KBM-like) 

– Within pedestal (N~0.96) 

•  reduced, ~ E (TEM-like) 

– Pedestal top (N~0.93) 

•  large, >> E (Microtearing) 

– Core (N<0.9) 

• ITG dominant, E small 

 

•  profile has similar structure with lithium 

– Regions are broader (pedestal widens) 

– Edge modes are always TEM/KBM hybrid 
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MT 

TEM 

KBM 

TEM/KBM 

MT 
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Pedestal width 
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Radial profile of maximum low-k growth rate, freq 

• Four spatial regions evident without 

lithium 

– Pedestal foot (N>0.98) 

•  is large, >> E (KBM-like) 

– Within pedestal (N~0.96) 

•  reduced, ~ E (TEM-like) 

– Pedestal top (N~0.93) 

•  large, >> E (Microtearing) 

– Core (N<0.9) 

• ITG dominant, E small 

 

•  profile has similar structure with lithium 

– Regions are broader (pedestal widens) 

– Edge modes are always TEM/KBM hybrid 
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Hybrid TEM/KBM mode is dominant in steep-gradient-region 
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With lithium, N=0.92 

• a/LTe and  scan shows TEM-like 
behavior 
•  increases with a/LTe 

•  decreases with  

•  scan is KBM-like 
• Sharp increase in  at high  

• Weaker increase even below this knee, 
where r is negative 

• ‘Hybrid’ TEM/KBM w/ smooth 
transition between negative and 
positive r 

 

• Consistent with pedestal being near 
KBM onset 
• Except that increasing ’ in the MHD 

equilibrium is strongly stabilizing 

• Stronger than  alone: when equilibrium 
’ is scaled-self consistently higher  
reduces  

 

TEM 

KBM 

TEM/KBM 

MT 
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Hybrid TEM/KBM mode is dominant in steep-gradient-region 
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With lithium, N=0.92 

• a/LTe and  scan shows TEM-like 
behavior 
•  increases with a/LTe 

•  decreases with  

•  scan is KBM-like 
• Sharp increase in  at high  

• Weaker increase even below this knee, 
where r is negative 

• ‘Hybrid’ TEM/KBM w/ smooth 
transition between negative and 
positive r 

 

• Consistent with pedestal being near 
KBM onset 
• Except that increasing ’ in the MHD 

equilibrium is strongly stabilizing 

• When equilibrium ’ is scaled-self 
consistently higher  reduces  

• No stiff P limit at KBM onset? 

 

a/LTe only 

a/LTe+’ 

 only 

’ + 

TEM 

KBM 

TEM/KBM 

MT 
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Te, Ti increased and edge ne decreased with lithium 
coatings  

No lithium 

With lithium 

separatrix 
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Summary of profiles used in calculations 

• Peak pressure gradient moves 

inward from N=0.96 to N=0.9 

with lithium 

– Pressure pedestal broader with 

lithium 

• Collisionality reduced with Li 

• Outside N~0.95 

– a/LTe similar with/without lithium 

– a/Lne decreased with lithium 

• e increases 

• Inside N~0.95 

– a/LTe, a/Lne increase with lithium 

– a/LTi, Te/Ti decrease with lithium 
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Without Lithium 

With Lithium 
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Pre-lithium EB shear is determined from measured Vt, PC6+ 

profiles 

• Carbon toroidal rotation, pressure 

profiles used to estimate Er 

– Poloidal rotation contribution small 

in other discharges (Bt~Bp) 

(Maingi, PRL ’10) 

• Shear rate calculated using two 

expressions 

– Waltz-Miller 

 

 
 

– Hahm=Burrell 

 

 

• Shear rate is largest within 

pedestal region 

– Narrow region with substantial 

pressure contribution 
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Region with large EB shear becomes wider with lithium 

• Values outside N~0.95 are 

extrapolations 

 

• Vt, dVt/dr are larger than 

pre-lithium case 

 

• Pressure gradient gives 

significant contribution to E 

over a wider radial range 
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Results are converged with grid size and time step 

• N = 72 works well in all cases 

• t  0.01, depends on radius (varies with , r) 

– Also converged for dominance of two competing modes 

 

NE=16 

 

N=41 
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