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Outline

* Review of changes to edge plasma with lithium

« Gyrokinetic calculations of edge stability towards
understanding the effects of lithium

« Pedestal-top is microtearing unstable without lithium, stable
with
— Stabilized by density gradient

* Near-separatrix region is unstable to ETG, more strongly
with lithium
— Nonlinear simulations suggest ETG may be experimentally relevant
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Type | ELMs eliminated, energy confinement improved with
lithium wall coatings
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Microstability of the NSTX pedestal with/without lithium is
studied with GS2*

« Local, linear microstability examined with GS2 code
— Fully electromagnetic, with collisions (pitch-angle)
— Kinetic electrons, D and C°* ions
— Kinetically constrained equilibria consistent with profiles & Jy,qostrap

» Applicability of local approach is T
limited at edge 50 T

« OK at pedestal top for ion scales, and 40+

everywhere for electron scales (L/p,>>1) & 30

= Results presented here

» Global simulations clearly needed in steep 9]

gradient region (L/p;~5) 10| ==L/p.

----- Pressure
88 085 09 095
YN

*M. Kotschenreuther et al, Comput. Phys. Commun. 88 (1995) 128.
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Microtearing is dominant at pedestal top without lithium

 Mode type ID’d by eigenfunction structure, 08
real frequency, parameter dependence 85 0.4® o

« Various low-k modes (k,p.<1) are unstable = 02 °3
across the edge 0

— Core (y\<0.9)
* ITG dominant, yz small
— Within pedestal (y,~0.96)
 yreduced, ~ y¢ (TEM-like with KBM
signatures)

— Pedestal top (y,~0.93)

vy large, >> vy (Microtearing)

» Microtearing unstable region corresponds
to break in VT,

Canik, NF ‘13
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Stabilization of pedestal-top microtearing modes with lithium
correlates with reduced transport region in experiment

* From y = 0.8-0.95 Vn, increased with lithium.~ os: |
=
— Increased Vn, stabilizing to MT (strongest 8 Om '%\’ -
parameter dependence) =, 02 \
0

— TEM becomes dominant, reduced y closer to yg

=t==\/Vithouf lithium |

. ) == \With lithium
> 300L e

* v, inferred from SOLPS modeling* of = fggh-'\
experiment is reduced in this region 0

= Vn, stabilization of MT contributes to improved 15/ M1 |
energy confinement with lithium? & 1L TEM A, !

— Similar picture from MAST analysis? - 05—\-.... _____________ :g_;_&:YE-

— Needs nonlinear simulations to quantify _ 0 e

— Confinement improvement region is broader than ‘“; 4\\%
where MT are stabilized |

— Physics behind change in n, profile unknown X

$85 09 095
1Canik, PoP ‘11, 2Dickinson, PRL ‘12 (2N

—
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ETG modes are unstable near the separatrix

200
 ETG calculated to be unstable Kops 2 10.0
for yy > 0.95 both without and 150y
with lithium E‘” 100
« Growth rates significantly = Without Lithium
higher with lithium S0p  with Lithium
— alL. is reduced, while a/L+, is -
unchanged e 08 09 095 1
W
— =7, Increases from ~1.5to ~2 150 N
+ Could play arole in keeping T, & |
profile clamped at edge T |
50 -
— Important for P-B stability ;
— Linearly picture holds of
0 10
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Nonlinear simulations indicate ETG heat flux may be
significant with lithium

« Electrostatic, adiabatic ion simulations, including collisions and ExB
« Without lithium (high density gradient), ETG heat flux is very small

« With lithium, at nominal electron temperature gradient, ETG gives ~1/3-
1/2 experimental electron heat flux

*  With a/L, increased by ~20%, ETG can provide entire experimental flux
« Similar flux level found out to radius of y,=0.99

y=0.97

e \Afith Lithium
0.8l e \AfiEMOUT Lithium

= 0.6}
% EXxpt.

% 25 30 35 40 Jss 0.9 0.95 1

aiLTe 1_|JN
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Summary/conclusions/future work

« Two important edge regions identified by 2D interpretive
modeling of NSTX discharges without and with lithium

— Near-separatrix (y,>0.95): T, clamped=pressure gradient reduced with
density when lithium is deposited (important for ELM stability)

— Pedestal-top (y,~0.8-0.95): transport reduced with lithium (contributes to
energy confinement increase)

* Microtearing is dominant at pedestal-top without lithium
— Stabilized by the increased density gradient with lithium

— Could contribute to increased confinement with lithium->need nonlinear
simulations

 ETG is destabilized near separatrix with lithium
— Could play a role in observed T, stiffness
— Nonlinear simulations yield fluxes near experiment

Changes to density gradient with lithium play key role
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EXTRA SLIDES FOLLOW
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Microtearing is dominant at pedestal top without lithium

« Mode type ID’d by eigenfunction structure,
real frequency, parameter dependence

» Four spatial regions evident without
lithium
— Pedestal foot (y,>0.98)
 yislarge, >> yc (KBM-like)
— Within pedestal (y\~0.96)
 yreduced, ~ y¢ (TEM-like)

— Pedestal top (y,~0.93)

 ylarge, >> vy (Microtearing)
— Core (y\<0.9)
* ITG dominant, yz small

4

KBM

(?.85
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Density gradient is stabilizing to MT modes dominant at
pedestal-top without lithium

Increasing a/L,, stabilizes MT v,=0.93
— TEM becomes dominant, with 37Kjp,= 1.00 NLTEE :
reduced y dp/di/Constant | 2.0[k5.=1,00
If magnetic geometry is held 2 1 1-5-’“&\ ~
fixed, KBM onset occurs at S | o0
hlgh a/Lne = 10 ~ 05l |
With pressure gradient in | || S———
geometry scaled consistently ~ o:. prdr scajed with allbe 5
— No KBM onset 2 KBM & ) |
— alL,, continues to be - g 3.5 '
stabilizing g 0 = a0l
— Growth rate _strongly regluced g -2 0.01 0;)10(01/:;0 10.00
at a/Lne of discharge with 4B T
lithium _6; MT !
Decreasing collisionality is 0 4 2 4 6 8 40
weakly destabilizing at these wio Li L. wi Li
parameters
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Nonlinear calculations performed to test if ETG transport is
significant near experimental parameters

« Electrostatic, adiabatic ion simulations

« Collisions and ExB shear included

« Simulations run out to quasi steady state

« Resolutions checks performed to ensure heat flux is converged

« Transport peaks at rather high ky due to distortion of flux tube
near separatrix

] 020
g 3 i E‘s : i
g : 3 0104 A .
2_ 7 m ik}
g 2F B o
<]
0.05 —
1 n —]
0:_. —_— 0.00 / .- L . ;“'..'.'——__' . TEYNY, . . . _
0 5 10 15 20 25 30 0 200 400 600 800
t (a/c,) kyps
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Peak pressure gradient moves inwards, p’ and j reduced

outside y,~0.95

8: ----------------------------- 0 .
Without-li [ 129015, 0.4s
— 6 With-li ;
© -
m i 20 ,,,,
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Mode type identified by eigenfunction structure and real

frequency

« Instabilities calculated over wide
range of Kyp.
— For now focus on ion scales (kyp.<1)

— ldentify most unstable mode at each
radius

« ITG/TEM
— Twisting parity (3A, odd)
— Re[8A] and Im[6A] have opposite
sign

— Real frequency determines ITG vs
TEM

* Microtearing
— Tearing parity (3A; even)
- KBM
— Twisting parity (3A, odd)
— Re[8A] and Im[6A] have same sign

« Mode ID has been confirmed via
parameter scans to test for
expected scaling
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Radial profile of maximum low-k growth rate, freq

4
» Four spatial regions evident without = Pre-lithium _
lithium . === Vith-lithium | Pedestal wid
— Pedestal foot (y,>0.98) _ KBM
* yis large, >> v (KBM-like) o 2|
— Within pedestal (y,~0.96) = MT

* yreduced, ~ yg (TEM-like) 1l TEM/KBM

— Pedestal top (y,~0.93)
 ylarge, >> yc (Microtearing)
— Core (y\<0.9)
* ITG dominant, yz small

« v profile has similar structure with lithium
— Regions are broader (pedestal widens)
— Edge modes are always TEM/KBM hybrid
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Radial profile of maximum low-k growth rate, freq

4

» Four spatial regions evident without === Pre-lithium
= \With-lithium

lithium
— Pedestal foot (y,>0.98)
 yislarge, >> yc (KBM-like)
— Within pedestal (y,~0.96)
 yreduced, ~ y¢ (TEM-like)
— Pedestal top (y,~0.93)
 ylarge, >> yc (Microtearing)
— Core (y\<0.9)
* ITG dominant, yz small

(BM

« v profile has similar structure with lithium
— Regions are broader (pedestal widens)
— Edge modes are always TEM/KBM hybrid
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Hybrid TEM/KBM mode is dominant in steep-gradient-region

a/LTe and v scan shows TEM-like

behavior 5l

* vyincreases with a/LTe

« y decreases with v €2

« [} scan is KBM-like
« Sharp increase in y at high 3

= Pre-lithium
= \\/ith-lithium

......................

TEM/KBM

TEM

« Weaker increase even below this knee, %7 0.8

where o, IS negative
* ‘Hybrid’ TEM/KBM w/ smooth

transition between negative and _
positive w, Q)

« Consistent with pedestal being near

Y (cs/a)

KBM onset

o, (c,/a)

, (c,/a)

keps 0.20,

0.0 0.5 1.0 1.5 2.0
B (%)
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Hybrid TEM/KBM mode is dominant in steep-gradient-region

* a/LTe and v scan shows TEM-like — Prediium
behqwor | 3| KBM
* vyincreases with a/LTe s
« y decreases with v €2
+ B scan is KBM-like | TEM/KBM |
* Sharpincreaseinyathighp L —a=xp~ V TEM
« Weaker increase even below this knee, 07 0.8 0.9 K
where o, IS negative it N
+ ‘Hybrid’ TEM/KBM w/ smooth P UL (5
transition between negative and 150 Loy fae Fonly /
positive o, N | €3
T : T2
« Consistent with pedestal being near ' ' o

KBM onset

 Except that increasing B’ in the MHD a =0
equilibrium is strongly stabilizing < | J -1
« When equilibrium B’ is scaled-self e g

consistently higher 3 reduces y
* No stiff VP limit at KBM onset?

0.0 0.5 1.0 1.5 2.0
B (%)
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T, T, Increased and edge n, decreased with lithium

coatings

0

0.7 08 09 1.0 11 0.7 0.8 09 1.0 11

Wy

Wy

separatrix

No lithium
With lithium

@ NSTX-U
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Summary of profiles used in calculations

* Peak pressure gradient moves ~ o04® 40|
inward from y,=0.96 to y\=0.9 £, S
with lithium
— Pressure pedestal broader with 48 0 12
lithium . _
.. : : : J 20 <
« Collisionality reduced with Li @ 0
* Outside yy~0.95 0 9~
— alLq, similar with/without lithium 4 .
2 =
— alLn, decreased with lithium 3 20 - 1<\
* 1, INCreases g
. 1
* Inside y\~0.95 _\_
— alLq,, a/L,, increase with lithium 52 & s
— a/LTi, Te/Ti decrease with lithium 1 Without Lithium > _J
With Lithium
8.? 08 09 1 87 08 09 1
Wn ﬂ
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Pre-lithium ExB shear is determined from measured V,, P,

profiles
: : 50 : | 10 Total E
« Carbon toroidal rotation, pressure = _ VpiZen
profiles used to estimate E, sp VB,

— Poloidal rotation contribution small
in other discharges (B~B)
(Maingi, PRL '10)

« Shear rate calculated using two
expressions

— Waltz-Miller

_r o Eq
qorRB,

VE

— Hahm=Burrell
_R8,f o E
"®"7B oy RB,
« Shear rate is largest within

pedestal region

— Narrow region with substantial
pressure contribution

NSTX-U #RO?D"'(;E APS “13 — NSTX edge gyrokinetics with lithium, Canik (11/12/2013) 22



Region with large ExB shear becomes wider with lithium

. COMIE, 10 3 Total E,
« Values outside y,~0.95 are i VpiZer
extrapolations g ©f E "’
= 20! i
.V, dV/dr are larger than ™
pre-lithium case
".’E i
% %
* Pressure gradient gives I | ;
significant contributiontoyz ~ '1
over a wider radial range T ¥ :
: + ? - -H-B/10
3f : 03¢ ’ ]
X 2 i < :
= =
U
OE I y . o .
0.8 0.9 1.0 1.1 0.8 0.9 1.0 1.1
Yn Wn
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Results are converged with grid size and time step

* Ny =72 works well in all cases

* At <0.01, depends on radius (varies with y, o)
— Also converged for dominance of two competing modes

0.50[ ' ' . 0.50[
0.481 . 0.48[
[ . j N=16
T 0.46] + 0.46 )
Py : o N,=41
>~ 0.44 = 0.44

040l . . ... 040: . . . .
1.18] : 1.18}
1.16} ] 116}

Q) Q)
g | G —
g 1.14r g 1.14
1.12f 1.12
1.10( . . . ] 1.101 . . . .
20 40 60 80 100 0 100 200 300 400 500
N, 1/At (c /a)
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