H-mode Characterization and Edge Stability at Near-Unity Aspect Ratio in PEGASUS Discharges

Kathreen E. Thome on behalf of the PEGASUS Team

Wisconsin-Madison

55th American Physical Society Division of Plasma Physics Meeting

> Denver, CO Nov. 11-15, 2013

PEGASUS Toroidal Experiment

Experimental Parameters

Parameter Achieved L-H power threshold $B_{T}(T)$ 0.08 - 0.161.15 - 1.3scalings: $P_{th} \sim n_{o}^{0.7} B_{T}^{0.7} S$ Α **R** (m) 0.2 - 0.45 $I_{p}(MA)$ < 0.21 – At very low-A and hence 1.4 - 3.7к low B_{T} , P_{th} is very low $t_{shot}(s)$ < 0.025 $T_{e}(eV)$ 100 - 200- Scalings^{1,2} suggest 0.7 PEGASUS $P_{th} < 0.1 \text{ MW}$ P_{OH} 0.6 P_{th} Scalings $- P_{OH} = 0.2 - 0.7 \text{ MW}$ 0.5 ITER Design P_{OH} (MW) 0.4 Aspect-ratio /// 0.3 Modest t_{shot} and $\langle T_e \rangle$ 0.2 allow probes in pedestal 0.1 0.0 0.05 0.10 0.15 0.20 $I_{p}(MA)$ ¹Accepted ITER design threshold P_{th}: K. Ikeda, "Nucl. Fus., 47, 2007. ² P_{th} with low-A data: I. H. mode Power Threshold, Plasma Phys. Control. Fus., 46, 2004 THE UNIVERSIT K.E. Thome, 55th APS-DPP, Denver, CO, November 2013

Fueling Location, Particularly in STs, is Critical for Achieving H-mode

• LFS and HFS fueling

- H-mode achieved using HFS fueling
 - Similar to MAST and NSTX¹
 - Both limited and diverted

¹ A. R. Field et al, Plasma Phys. Control. Fus., **46**, 2004. K.E. Thome, 55th APS-DPP, Denver, CO, November 2013

LFS Fueled (L)

HFS Fueled (H)

Diverted (H)

Limited

Ohmic H-mode Plasmas have Standard Signatures

- H-mode signatures observed:
 - Quiescent edge
 - Increased core T_e , T_i inferred
 - Reduced D_{α}
 - Large and small ELMs suggested
 - Bifurcation in ϕ_D
 - Core v_{ϕ} reverses

P_{th} Measured using V_{loop} Scans

- Infer t_{LH} from bifurcation in ϕ_D
 - Vary $P_{OH} = I_p V_{loop}$
 - Constant I_{EF}, shape, fueling

P_{th} ~ 0.25–0.30 MW
Scalings predict < 0.1 MW

K.E. Thome, 55th APS-DPP, Denver, CO, November 2013

Current Pedestal Measured using Hall Probe Array

 Internal B_z measurements from Hall probe array yield local J_φ(R,t)¹

 Current gradient scale length significantly reduced in H-mode

$$-L \rightarrow H: 6 \rightarrow 2 \text{ cm}$$

 $-\rho_i \sim 1.8 \text{ cm}$

¹ M. Bongard, Rev. Sci. Instrum. **81**, 10E105 (2010). K.E. Thome, 55th APS-DPP, Denver, CO, November 2013

Large and Small ELMs Suggestive of Type I and III ELMs are Seen

- Filament structures observed
 - Large ELMs infrequent and violent
 - Can cause H-L back-transition
 - Occur at high P_{OH}
 - Small ELMs more ubiquitous and less perturbing
 - Occur at lower P_{OH}
- n measured with close-fitting coil array through ELM crash
 - PEGASUS results similar to NSTX
 - Large ("Type I"): intermediate-n
 - Small ("Type III"): low-n
 - STs appear to have structure opposite that of ATs

K.E. Thome, 55th APS-DPP, Denver, CO, November 2013

Small ELM J_{edge}(R,t) Dynamics Measured Throughout Single ELM Cycle

- Dynamic evolution measured at high time and spatial resolution
 - $n \le 3$ precursor
 - Rapid collapse and recovery of H-mode pedestal
- Current-hole perturbation accompanies pedestal crash
 - Followed by current filament ejection and pedestal recovery
 - Dynamics are identical to those observed in earlier peeling mode studies on PEGASUS¹

¹Bongard et al., Phys. Rev. Lett. **107**, 035003 (2011) K.E. Thome, 55th APS-DPP, Denver, CO, November 2013

Similar Sequence of Events Through Large ELM Crash

- J_{edge}(R,t) profiles measured throughout single large ELM
 - No clear EM precursor but intermediate-n structure during ELM
- Large ELM J_{edge}(R,t) shows complex evolution
 - **1)** Modest but steep J_{edge} pedestal
 - 2) Rapid buildup of J_{edge} until crash
 - 3) Collapse with wider pedestal gradient (similar to L-mode)
 - 4) Current-hole filament ejection
 - 5) Recovery: slightly lower than pre-ELM pedestal

H-mode may facilitate access to high β_t at A ~ 1

- HI startup to OH H-mode demonstrated
- Requires longer pulse and higher I_{p} : helicity injection (HI)

Provides additional Volt-seconds

- **Detailed ELM dynamics** Supported by edge diagnostic access
- n_e, M, and fueling location
- and ELM Characterization at Near-Unity A P_{th} characterization with I_{p} , shape,

- Low toroidal field at A ~ 1 facilitates access to H-mode
 - $-P_{th} \sim 5x$ greater than P_{th} scalings' predictions
 - Edge current pedestal observed
- Large, small ELMs observed and $J_{edge}(R,t)$ dynamics measured
 - Difference in toroidal mode numbers between large and small ELMs
 - Measured $J_{edge}(R, t)$ ELM dynamics show current-hole perturbation
- Extending studies to wider operational spaces to characterize H-mode access, ELM dynamics

For more details, please see Thursday morning poster session: TP8.00021: Access to and Characterization of Ohmic H-mode Plasmas at A ~ 1 TP8.00022: Initial Investigations of H-mode Edge Dynamics in PEGASUS

