

Supported by

M3D-K Simulations of Toroidicity-induced Alfvén Eigenmodes on NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

D. Liu¹, G. Y. Fu², J. A. Breslau², E. D. Fredrickson², M. Podestà², N. A. Crocker³ and S. Kubota³

> ¹ University of California, Irvine ² Princeton Plasma Physics Laboratory ³ University of California, Los Angeles

55th Annual Meeting of APS Division of Plasma Physics November 11-15, 2013 **Denver, Colorado**

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

NSTX Provides an Excellent Test-Bed for Fast Ion Study and Code Validation

- ►Low field (0.3-0.55T), high density(<10x10¹⁹m⁻³) NB energy 60-100 keV $\rightarrow v_{fi} / v_{alfven} \approx 1-5$
- TAEs: routinely observed in NSTX; cause fast ion redistribution/loss.

 \succ In this work,

- Carried out linear simulations of beam-ion-driven
 TAE and compared with measurements
- Explored the effects of rotation, q profile change
- Developed an interface to use realistic fast ion distribution from NUBEAM output

Start with linear simulation at t=470ms for code validation

M3D-K: Global Kinetic/MHD Hybrid Code

In this work, we use

Realistic geometry, experimental parameters and profiles

Plasma rotation & anisotropic fast ion pressure included

Analytical slowing-down fast ion distribution

$$f = \frac{cH(v_0 - v)}{v^3 + v_c^3} \exp(-\psi / \Delta \psi) \exp[-(\Lambda - \Lambda_0)^2 / \Delta \Lambda^2], \Lambda = \frac{\mu B}{E}$$

Experimental Plasma Parameters and Profiles are Used for Inputs of TAE Simulation

NSTX parameters and profiles

- B₀=0.55T, R=0.85m, a=0.67m
- n_e(0)=4.4x 10¹³ cm⁻³
- T_e(0)=1.4 keV, T_i(0)=1.3 keV
- v_{fi} / v_{alfven}=2.5
- $\beta_{tot}(0) = 18.4\%, \ \beta_{fi}(0) = 6.5\%$
- •Analytic slowing down distribution

Self-consistent equilibrium with rotation and anisotropic fast ion pressure

n=3 Linear Simulation Exhibits Ballooning Feature

>n=4 and n=5 linear simulations also show TAE-like ballooning structure

Mode Structure and Mode Frequency of Simulated n=3,4,5 TAE are Similar to Experimental Measurements

	n=3	n=4	n=5
f _{exp} (kHz)	100	120	140
f _{M3D-K} (kHz)	106	130	149

Reflectometer response (ξ)
 modeled for M3D-K δn with
 WKB approximation

Red: M3D-K synthetic reflectometer signal

🔘 NSTX-U

Black: reflectometer measurements

Strong Rotation Affects Mode Stability

Reasons under investigation

Mode Growth Rate is Sensitive to q Profile, but Mode Structure and Frequency are Less Affected

	γ/ω _Α (%)	Frequency (kHz)
Ψ at q _{min} =0.19	6.1	106
Ψ at q _{min} =0.26	4.7	106
Ψ at q _{min} =0.30 (baseline)	2.9	106
Ψ at q _{min} =0.35	1.4	106

 f_{exp} (kHz)=100kHZ

Although U shifts as q=7/6 surface moves, but synthetic reflectometer response is less sensitive

Initialization with Realistic Fast Ion Distributions is needed for Accurate simulations

>NUBEAM gives more realistic and classical fast ion distribution $F(R,Z, \lambda=v_{\parallel},v, E)$

>Hybrid simulation codes need fast ion distribution in (P_{ϕ} , μ , E) and the function must be smooth enough to allow derivatives to be taken with E and P_{ϕ}

>Convert fast ion distribution from F(R,Z, $\lambda = v_{\parallel}/v$, E) to f(P_{ϕ}, μ ,E)

$$\int F(R,Z,\lambda,E)R\sqrt{E}dRdZd\lambda dE = \sum_{v_{sign}} \int f_{v_{sign}}(P_{\phi},\mu,E)\mathfrak{I}_{v_{sign}}(P_{\phi},\mu,E)dP_{\phi}d\mu dE$$

Mode Structure are Similar for the Runs with Analytic and NUBEAM Fast Ion Distributions

🔘 NSTX-U

Summary

- Both the mode structure and frequency of n=3,4,5 TAEs from linear M3D-K simulations are consistent with experimental measurements.
- A sensitivity study shows that mode structure and frequency are relatively insensitive to q profile variation (within experimental error), but mode growth depends strongly on rotation and q profile.
- Realistic NUBEAM fast ion distribution now can be used as inputs of M3D-K or other kinetic simulation codes.
- Future work
- Nonlinear simulations of multiple TAEs and mode avalanches
- Consider kinetic effects of thermal plasmas

Backup Slides

n=4,5 Simulations also Exhibit TAE-like Mode Structure

Fast Ion Beta has Weak Effect on Mode Structure

q_{min} Value Scan: Mode Growth Rate, Mode Structure and Frequency are Weakly Affected

	γ/ω _A (%)	Frequency (kHz)
q _{min} =1.02 at Ψ=0.30	3.5	100
q _{min} =1.09 at Ψ=0.30 (baseline)	2.9	106
q_{min} =1.13 at Ψ =0.30	3.4	107
q_{min} =1.15 at Ψ =0.30	3.8	106

f_{exp} (kHz)=100kHZ

WNSTX-U

q Shape Scan: Mode Growth Rate is Sensitive to q Profile, but Mode Structure and Frequency are Less Affected

	γ/ω _Α (%)	Frequency (kHz)
q ₀ =1.02	6.9	99
q ₀₌ =1.09 (baseline)	2.9	106
q ₀ =1.32	3.1	108
q ₀ =1.50	2.4	109

 f_{exp} (kHz)=100kHZ

Initial Fast Ion Distribution Weakly Affects Mode Structure and Mode Frequency

Mode Structure and Mode Frequency are Similar for the Runs with Analytic and NUBEAM Fast Ion Distributions

	γ/ω _Α (%)	Frequency (kHz)
Anisotropic f ₀ (baseline)	3.1	106
NUBEAM f ₀	3.2	99

f_{exp} (kHz)=100kHZ

➤NUBEAM f₀: TRANSP run with experimental plasma profiles

Initial Fast Ion Distribution Affects Mode Structure and Mode Stability

	γ/ω _Α (%)	Frequency (kHz)
Isotropic f ₀	1.9	101
Anisotropic f ₀ (baseline)	3.1	106
NUBEAM f ₀	3.2	99

f_{exp} (kHz)=100-90kHZ

Analytical slowing-down fast ion distribution $f = \frac{cH(v_0 - v)}{v^3 + v_c^3} \exp(-\psi / \Delta \psi) \exp[-(\Lambda - \Lambda_0)^2 / \Delta \Lambda^2], \Lambda = \frac{\mu B}{E}$

NUBEAM fast ion distribution
 NUBEAM: a Monte Carlo module in TRANSP code for 4D (R,Z, λ=v_{||},v, E) time dependent simulation of fast ion transport
 Assume fast ions behave classically;
 Include guiding center drift orbiting, collisional, and atomic physics effects

Comparison of Mode Structure Obtained with Analytic and NUBEAM Fast Ion Distributions

TAE Continuum and/RSAE Eigenmodes from NOVA

Comparison of δ **n/n from Measurements and NOVA (t=484ms)**

Jacobian of the Transformation from Velocity Space to Constantsof-Motion Space Strongly Depends on Particle Orbit Topology

B

Transformation from velocity space to constants-of-motion space.

$$\int G(x, y, z, v_x, v_y, v_z) d^3 \mathbf{x} d^3 \mathbf{v}$$

= $\int F(R, Z, \lambda, E) R \sqrt{E} dR dZ d\lambda dE$
= $\sum_{v_{sign}} \int f_{v_{sign}}(P_{\phi}, \mu, E) \mathfrak{I}_{v_{sign}}(P_{\phi}, \mu, E) dP_{\phi} d\mu dE$

$$P_{\varphi} = (eA_{\varphi} + mv_{\varphi})R \approx e\psi(R, Z) + mv_{\parallel}R\frac{B_{\varphi}(R, Z)}{B(R, Z)}$$
$$\mu = \frac{\frac{1}{2}mv_{\perp}^{2}}{E} = \frac{[1 - (v_{\parallel}/v)^{2}]E}{\lambda} = \frac{\lambda}{v_{\parallel}}/v$$

B(R,Z)

An exact analytic $\Im_{v_{sign}}(P_{\varphi}, \mu, E)$ cannot be easily calculated because it requires integration over phase space orbits.

$$\mathfrak{I}(P_{\varphi},\mu,E) = \frac{4\pi^2 \tau_{bounce}}{qm^2}$$

*J. Egedal Nucl. Fusion 2005

Jocabian Can be Calculated Accurately with Iterative Monte Carlo Method

Jacobian can be considered as the ratio of infinitesimal volume in (P_φ, μ, E) space to the infinitesimal volume in (R, Z, λ, E) space
∫F(R,Z,λ,E)R√EdRdZdλdE = ∑_{vsign} ∫ f_{vsign} (P_φ, μ, E)ℑ_{vsign} (P_φ, μ, E)dP_φdμdE
>Iterative MC method (*Improved from Breslau's work)
Keep f uniformly in (R, Z, λ, E) space
Launch more particles in the region where the Jocabian has large relative error, adjust their weight

Jocabian Can be Calculated Accurately with Iterative Monte Carlo Method

>Jacobian can be considered as the ratio of infinitesimal volume in (P ϕ , μ , E) space to the infinitesimal volume in (R,Z,λ,E) space >Step 1: Launch 10M random particles uniformly in (R,Z, λ ,E) grids, Jacobian $\Im(P_{\phi}, \mu, E)$ is inversely proportional to the particle number/weight in each (P_{ϕ} , μ , E) grid The accuracy of $\mathfrak{J}(P_{4}, \mu, E)$ is generally not good near T/P or C/L boundaries. To improve the accuracy of Jacobian, set i_level=1 for all (R,Z, λ ,E) grids $>2^{nd}$ iteration: Double the particle number (20M) and reduce the particle weight by half; re-launch particles uniformly in (R,Z, λ ,E) grids; recalculate the Jacobian; find the grids in (R,Z,λ,E) space whose corresponding Jacobian has relative larger error and change their iteration marker i_level to i_level+1 >n-th Iteration: Launch ~20M particles uniformly in (R,Z, λ ,E) space except the grids whose Jacobian has relative larger error. For those grids, increase the particle number by $2^{(i_e)}$, and decrease their weight by $(\frac{1}{2})^{i_e}$ level.; recalculate the Jacobian; find the grids in (R,Z,λ,E) space whose corresponding Jacobian still has relative larger error and set their iteration marker i_level to i_level+1

Repeat n-th Iteration until relative error is acceptable.

🔘 NSTX-U

Constructing Fast Ion Density Function in Constantsof-Motion Space

- >Divide NUBEAM output particle data into two subsets based on v_{\parallel} sign
- >For each subset, sort particles by μ and divide them into several subpopulations of equal width in μ .
- >Divide each subpopulation into a number of bins in the P_{ϕ} and E directions. The bin width in P_{ϕ} and E direction are the same for each subpopulation.
- >Multiply by the numerically calculated Jacobian.
- > Apply Gaussian smoothing in both P_{ϕ} and E directions.
- ➢Fit 2D cubit B-spline to the smoothed data using GSL routines, with uniform knots and a number of coefficient s in each direction approximately 5/8 the number of bins.
- Store the spline coefficients in a file, which can be used to construct fast ion density function in constants-of-motion space and perform quick spline and derivative interpolations at arbitrary location.
- ➤ *Improved from the work of Breslau et al. Sherwood Meeting 2011

Good Agreement between Raw Fast Ion Density Function and Spline Fit in Constants-of-Motion Space

🔘 NSTX-U

Gradients are Smooth, Match well with NUBEAM Raw Data

🔘 NSTX-U

Gradients are Smooth, Match well with NUBEAM Raw Data

🔘 NSTX-U

29

Gradients are Smooth, Match well with Raw Data

WNSTX-U