

Supported by

ELM heat flux study in NSTX

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL **PPPL Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

J-W Ahn¹

K.F. Gan², R. Maingi³, T.K. Gray¹, A.G. McLean⁴, J.M. Canik¹, J.D. Lore¹, V.A. Soukhanovskii⁴, and the NSTX Research Team

¹ORNL, ²ASIPP, ³PPPL, ⁴LLNL

APS-DPP - Denver, CO Nov 11 – 15, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Multiple radial heat flux profiles are averaged for data analysis

- 2-D surface temperature data from IR camera are used for heat flux calc.
- Heat flux data in (x, y) plane is re-mapped to the (r, Φ) plane and all radial heat flux profiles are combined to create an average profile

$$\overline{q}_{peak,tor} = \sum (q_{peak,rad}) / N_{rad} \qquad \overline{\lambda}_{q,tor} = \sum (\lambda_{q,rad}) / N_{rad}$$

OAK RIDGE

NSTX-U

Peak heat flux and heat flux width are determined by total power and wetted area

OAK RIDGE

NSTX-U

• Total deposited power to divertor:

$$P_{div,IR} = \int 2\pi r \bar{q}_{tor}(r) dr$$

- Wetted area $A_{wet} = P_{div,IR} / \overline{q}_{peak,tor}$
- Integral heat flux width $\overline{\lambda}_{q,tor}^{\text{int}} = P_{div,IR} / 2\pi r_{peak} \overline{q}_{peak,tor}$ $= A_{wet} / 2\pi r_{peak}$
- Total deposited energy to divertor $W_{div,IR} = \int P_{div,IR} dt$

Temporal evolution and dependence on the ELM size of P_{div,IR} and A_{wet}

Characteristics of several ELM types in NSTX

- Type-I ELMs:
 - → Large ELM size, good confinement, high heating power
- Type-III ELMs:
 - → Medium size, poorer confinement, lower heating power
- Type-V ELMs:
 - → A small ELM regime in NSTX, good confinement, n = 1 – 2, indiscernible individual D_{α} peaks, IR and GPI data

R. Maingi, NF 2005

Wetted area decreases for type-I and III, and increases for type-V during the ELM

- Wetted area (A_{wet}) and heat flux width
 (λ_q) decrease during the ELM
 - → Significant A_{wet} reduction, 20 50%
 - \rightarrow Inverse relation between λ_q and q_{peak}
 - \rightarrow Same trend for type-III ELMs

OAK RIDGE

(D) NSTX-U

 \rightarrow Contrary to results from other tokamaks

Wetted area decreases for type-I and III, and increases for type-V during the ELM

- Wetted area (A_{wet}) and heat flux width (λ_q) **decrease** during the ELM
 - → Significant A_{wet} reduction, 20 50%
 - → Inverse relation between λ_q and q_{peak}
 - → Same trend for type-III ELMs

OAK RIDGE

(D) NSTX-U

 \rightarrow Contrary to results from other tokamaks

- Clear increase of A_{wet} and λ_q during ELM
 - \rightarrow Contrary to type-I and type-III ELMs
 - → Only modest q_{peak} rise (~20 30%) due to A_{wet} increase

Dependence of A_{wet} on ELM size shows unfavorable trend for type-I and III ELMs and favorable trend for type-V

COAK RIDGE

(D) NSTX-U

- Type-I and type-III ELMs show similar trend:
 - A_{wet} (therefore λ_q) decreases during the ELM
 - The size of decrease becomes bigger with the size of ELM power $\rightarrow \lambda_q$ decrease worse for larger ELMs
 - Type-V ELMs:
 - Shows favorable trend of $A_{wet} (\lambda_q)$ increase and the size of increase is proportional to the ELM size
- Larger ELM size gives bigger impact on expansion and contraction of A_{wet}

A_{wet} decrease leads to q_{peak} increase with increasing ELM energy loss for type-I ELMs in NSTX

OAK RIDGE

(D) NSTX-U

- NSTX: A_{wet} decreases with ELM energy loss $\rightarrow q_{peak}$ increases
- JET [1]: A_{wet} increases with ELM energy loss $\rightarrow q_{peak}$ constant
- Both machines show A_{wet} ↓ and q_{peak} ↑ for inter-ELM profiles

[1] T. Eich, PFMC 2013

- Wetted area (A_{wet}) determines heat flux width (λ_q) → decreases during type-I and III ELMs and increases during type-V ELMs
- The size of A_{wet} change is proportional to the size of ELM for both increase and decrease cases
- Contrary to data from conventional tokamaks, eg JET and AUG, A_{wet} decrease leads to q_{peak} increase with increase of ELM energy loss in NSTX → ELM heat flux mitigation technique necessary (eg, Snowflake divertor, ELM control by 3-D fields, etc. for NSTX-U)

Future work:

OAK RIDGE

NSTX-U

- Relation of A_{wet} to pedestal pressure in wider parameter range
- Understanding of the transport processes for A_{wet} contraction

Back-up Slides

Type-III ELMs: Similar behavior to type-I ELMs

Similar behaviors to type-I ELMs are observed

 $\rightarrow A_{wet} \downarrow$ and $\lambda_q \downarrow$ during ELM rise

OAK RIDGE

(D) NSTX-U

 \rightarrow Inverse relation between λ_q and q_{peak} at ELM

3-D field triggered ELMs: similar to type-I ELMs

• ELMs are triggered by applied 3-D fields, e.g. n=3 [1]

[1] J.M Canik, PRL 104 (2010), 045001

APS 2013 - ELM heat flux study in NSTX (Ahn), 11/11/2013 - 11/15/2013

3-D field triggered ELMs: similar to type-I ELMs

- ELMs are triggered by applied 3-D fields, e.g. n=3 [1]
- Again, ELMs reduce A_{wet} and therefore λ_q , similar to type-I ELMs

[1] J.M Canik, PRL 104 (2010), 045001

Toroidal asymmetry of peak heat flux and heat flux width is quantified

 Toroidal asymmetry (ε_{DA}) of peak heat flux (q_{peak}) and heat flux width (λ_q) is defined:

$$\varepsilon_{DA}(q_{peak}) = \sigma_{qpeak} / \overline{q}_{peak,tor}$$
$$\varepsilon_{DA}(\lambda_q) = \sigma_{\lambda q} / \overline{\lambda}_{q,tor}$$

- σ_{peak} and $\sigma_{\lambda q}$ are the standard deviation of q_{peak} and λ_q over the data in the toroidal direction
- σ_{peak} and $\sigma_{\lambda q}$ are normalized to the toroidal mean values of q_{peak} and λ_q

OAK RIDGE

NSTX-U

J-W. Ahn, JNM **438** (2013), S317

Toroidal asymmetry of peak heat flux and λ_{q} increases during ELM for all ELM types

- Asymmetry of both q_{peak} and λ_q increases during ELM for all ELM types
- Generally appears to be proportional to peak heat flux
- $\epsilon_{DA}(q_{peak})$ is larger than $\epsilon_{DA}(\lambda_q)$ except type-V ELMs, $\epsilon_{DA}(q_{peak}) \sim \epsilon_{DA}(\lambda_q)$

Heat flux asymmetry for triggered ELMs follows similar trend to natural type-I ELMs

- Toroidal asymmetry immediately increases with 3-D field application
- Data for triggered ELMs at ELM peak times well aligned with those for naturally occurring type-I ELMs

OAK RIDGE

NSTX-U