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NSTX has low field, high density and current;
perfect for study of fast ion-driven modes

* Low field, high density V s, = 0.5 - 2.7 x 10° m/s.
» Beam injection energy 60 - 100 kV, V., =2.6 - 3.1 x 10° m/s
 Reactors would have higher field, fusion a's and Vi,/Vasen> 1
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Non-linear physics of Alfvenic and Energetic Particle modes
is research priority for NSTX(-U)

Outline of talk:

* Two classes of instabilities cause fast ion transport and loss:
— Toroidal Alfvén Eigenmode (TAE) avalanches,
— Energetic Particle modes (EPM), i.e., modes which only exist in
presence of fast ion population.
« Both EPM/TAE show linear scaling of neutron rate drop with
mode amplitude
— EPM/TAE fast ion redistribution affects current/heating profiles.

« TAE avalanches seen for p¢,/Piota > 0-3,
— quiescent plasmas are found for B¢, /Piota > 0-3.

 TAE neutron rate drops modeled with ORBIT and NOVA

— semi-empirical approach using measured amplitude and frequency
— ideal, linear code NOVA is used to find eigenmodes to match data
— NOVA eigenmodes used in guiding center particle following code ORBIT
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Both TAE avalanches and Energetic Particle Modes (e.g.,

“fishbones™) cause large neutron rate drops

 TAE avalanches more common
early in discharge.

o hlgher Bfast/Bthermal
— elevated, reversed shear q?

* Energetic Particle Modes
(EPMs) happen throughout
discharge.

« Both types of events show
frequency chirping and often
multiple modes.

* (Goal is to develop some
method for classifying these
events, scaling of losses.
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NSTX 140727
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Many qualitatively different types of Energetic Particle
Modes are seen on NSTX

NSTX 138239
—_

« The most common EPMs are o T i~ =
represented by the two types T | | “ N3
shown here. T 60/l | ‘

« EPMs early in discharge, when 540 A _-
d.., >> 1, often saturate to long- § Bl :
lived n=1 modes. o 8 : \ -
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Parametric dependence of EPM and TAE avalanche
occurrences is helpful for understanding, planning

* Veof Varven IS measure of
resonances fast ions
can have with TAE.

* Brast/Pairven 1S measure of
drive to damping.

* Plasmas typically evolve
from lower-right towards
upper left.

 TAE avalanches only
occur for Beue > 0.3PBotar-

« Conversely, quiescent
plasmas were only seen
where ﬁfast < O'3I3total'
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TAE avalanche induced fast ion transport scaling is roughly

linear (or offset-linear) with mode amplitude

Magnitude of neutron rate ®

drops is comparable for

EPM and TAE avalanches. 30}

_~~

Largest events cause >20%

rate.

EPM typically show larger 10+

magnetic fluctuation level
for same amplitude neutron 0
drop as TAE avalanche.

>
transient drops in neutron v 20¢

7p)

o

TAE bursts
EPM i

oB/B
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In remainder of talk, TRANSP, ORBIT and NOVA (with
experimental mode amplitude and frequency evolution) will
be used to model fast ion redistribution by TAE avalanches.

@ NSTX-U
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Multi-mode interaction of Toroidal Alfvén Eigenmodes can
greatly enhance fast ion transport

Berk, et al., Phys. Plasma 2 1995 2007

Distribution function (a.u.)

(N U NN SN SN U N SN NN U NN SN S ——

T o ororor o

2 1
Velocity (a.u.)

Distribution function (a.u.)

v

v

.
— ’ —
M 1 1 1 1 1 1 1 1 L1 1

T " °r " r r r r r rri

’
’
’
’
’
-’
L
’
’
’
’
’
’,
’,
L4
-
, —
v
’

V2 V1
Velocity (a.u.)

Low amplitude modes don’ t
overlap in fast-ion phase-space.

When modes overlap at larger
amplitude can cause ‘avalanche’,
accessing more free energy; driving
stronger modes, new modes.

Interaction of multiple modes
enhances fast ion transport.

TAE avalanches have strong mode
bursts consisting of multiple modes.

TAE have multiple resonances,
more complex physics.

@ NSTX-U
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Large TAE bursts in NSTX show sudden growth to large
amplitude, large increase in fast ion transport

NSTX 124781

* As in avalanche model, multiple 150 r
modes are present; however each
mode has also multiple resonances -
allowing potentially an “avalanche =~ £100
of one". §
« Amplitude of final burst in sequence 3
Is typically 10 times larger than § >0

previous bursts.

» Last burst is accompanied by ol
neutron rate drop and is followed by " b) Neutron rate (1013/s)

NA

: . 2.5F .

a quiescent period. MW
2.0F N

|

. : 0
Large fregu_ency chirps are 1 | B
characteristic of NSTX TAE bursts. 8F ' ]
6 c) Reflectometer R=1.21m
) . : - Mirnov coil
« Simulation and comparison has o 4
been done for avalanches in both H- 2
O o - -
mode and L-mode plasmas. 0.275 0.280 0.285

Time (s)
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Use of scaled linear eigenmodes validated by multi-channel
reflectometer measurements

124781

 NOVA linear eigenmodes are 2007 3 Gengiy fuctuatons |
. (reflectometer 50 GHz)

scaled by multi-channel I
reflectometer data for ORBIT 1l

simulations.

,‘r |

» Linear mode structure
relatively unaffected by
frequency chirp, mode growth

iIn multiple reflectometer
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b) rms(30-200kHz)
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* ...except toward end of burst, S
where some distortion is seen. . i © 1389%200kH2)
=) Mirnov - i
(4]

 Amplitude at time of avalanche |
much greater than earlier 0275 0.280 0.285 0.290

Time (s)
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Mode structure, measured with reflectometer array, well
modeled for L-mode avalanches
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The black curve shows the total flux
surface displacement inferred from the
above fitting.

Similar agreement found for avalanches
In H-mode plasmas.
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B:.s¢ decay time in ORBIT simulation is consistent with
measured drop in neutron rate 6S

NSTX 139048

* Time evolution of fast ion beta in K neaquananeaamaye
ORBIT simulation is consistent with 1.64;_\ (a.u.)faSt.
measured neutron rate drop. 1.62} \\

» Evolution of measured neutron rate "%

(middle panel). R——
_ _ _ _ . Neutron Rate ;

« Drop in B, is due primarily to o (101455)  ;
energy loss and redistribution. 1.4k
— Fast ion losses become more important

at higher mode amplitudes. P e blB(G)

 Amplitude evolution of TAE (last ‘z
panel). 10

« Peak in mode amplitude roughly 2V 20-200kHz

. . . . T | PN SN B I
coincides with maximum dS/dt. 0 1 2

Time (ms)
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Apparent onset of stochastic transport seen in
ORBIT simulations

The red squares show the »

estimated total neutron rate drop
vs. scaled TAE amplitude.

40 -

Threshold is seen for onset of =
significant neutron rate drop in §
ORBIT simulations (at= 0.3 of o
nominal measured mode

amplitude). 10F

Neutron rate drop at low
amplitude primarily from energy
loss and from redistribution.
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Normalized Mode Amplitude

In L-mode, neutron rate drop due to fast ion losses onsets
at = nominal mode amplitude (blue circles).

M. Podesta, NP8.00030, Development of a reduced model for resonant fast ion transport in TRANSP

@ NSTX-U
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Energy lost from fast ions consistent with estimated energy

lost from TAE to thermal plasma

The fast ion energy loss is Amplitude vs. time for dominant n=2 model
calculated with ORBIT: 1.00 | H-mode shot 139048 0.265s
net 66, = 1.0 x 1073,

Peak .., = 1.9 x 10 from
NOVA scaled to measurement

then 6/3)fast//5wave ~5.3.

The energy lost through TAE
damping is calculated using
NOVA eigenmodes and
measured mode amplitude
evolution:

Ydamping
= -4x10%/s

1 lllllll
1 IIIIIII

3
Yqrowth = 5x10°/s
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/Wpeak = 6[5fast /ﬁwave = 2)/damp j~(IA‘rznode(l‘)/Alz)eak)dZL =~ 2ydamp (O 5 X 10_3 S)

The empirical damping rate of 4x10%/s yields 8B../Byave =

|74
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o

4.0
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Semi-empirical modeling of fast-ion transport in TAE
avalanches reproduces experimental results

i Neutron rate drops of up to =25% are correlated with both
TAE avalanches and EPM bursts.

» TAE avalanches only seen for B¢,./Bit>0-3-

« NOVA ideal modes, scaled to experimental amplitude, used
In ORBIT to simulate effect on fast ion population.

« Up to the measured mode amplitude, dominant effect is a
reduction in net energy of the sample fast ion population.

« Reduction in fast ion energy reduces fusion rate; drop is
consistent with experimental drop in neutron rate.

* Simulated energy lost from fast ions is comparable to
estimated energy lost from TAE damping on thermal

1
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Future work will address physics issues arising from strong
sheared toroidal rotation.

NSTX 124781 n=3
1 L l L I I 1 [\. I i

* Blue curves show n=3 Alfvén
continuum neglecting sheared
rotation, solid red lines show
continuum including rotation
shear effects.

| » Dashed red curve Doppler
{1 frequency for n=3 mode.

Frequency (kHz)

 Strong rotation allows coupling
of off-axis TAE with core MHD.

 Plasma rotation also affects both

) . A |n“ : u n
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