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Motivation

« Why study lithium as a plasma facing component?
— Lithium improves plasma performance

* Improvement in energy confinement:
— Total plasma stored energy
— Electron stored energy

— Decrease in ELMS while
maintaining high performance

* Reduced recycling

* However, lithium deposition increases
Z . and radiated power

no lithium
260 mg lithtum
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Motivation

- We want to understand the fundamental mechanisms responsible for
these benefits.

* Research outlook
— Apply results to optimize lithium conditioning.
— Understand how fundamental physics transfers to other systems.

* Approach:
— Surface chemistry: X-ray photoelectron spectroscopy (XPS)
— Quantum-classical molecular dynamics (QCMD)
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Methods

« X-ray photoelectron spectroscopy (XPS)

— X-rays probe the near
surface (~5 nm).

— Core shell photoelectron is
ejected and detected.

— Photoelectron binding
energy is characteristic of is
binding chemistry.

KE = hv — BE — Work Function
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The formation of new peaks or a
reproducible peak shift is an indication
of a chemical change.
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Typical XPS spectra for lithiated graphite

« The chemical bonds responsible for deuterium retention can be observed using
X-ray photoelectron spectroscopy.

- Oxygen is found in ATJ graphite, lithiated graphite, and D irradiated Li-graphite.

i I '0 1sI ' I ' I ' I ' I i
3. After deuterium « Oxygen concentration 5 )
bombardment increases to ~20-45%. < /\A‘ Jostb B°mbard:::t-
2. Lithiated * Li1s peak forms. % I ] ‘
graphite « Oxygen concentration € | _
increases to ~10%. & - J Lithiated Graphite
1. Virgin graphite « Oxygen accounts for g |
~5% of surface z |
concentration. - A ~J,  Virgin Graphite
6(1)0 l 5(1)0 l 4(1)0 l 3(1)0 l 2(l)0 l 1(1)0 l 0

Binding Energy (eV)

/4/
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Control experiments identify D-chemistry

graphitic

2um lithium
—Li-O-D peak forms in Ols

Li-C-D peak forms in Cls— 5|

Normalized Intensity (a.u.)
Normalized Inten$ity (a.u.)

o~
A
4\

graphitic

No lithium

No new peaks form upon
D-bombardment.

Normalized Intensity (a.u.)
Normalized Intensity (a.u.)

Binding Energy (eV) Binding Energy (eV)

Deuterium related chemistry is observed indirectly in the Ols and Cls
4 energy range. Li-O-D and Li-C-D interactions identified.
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NSTX tile chemistry corroborates technique

+ Lithiated graphite laboratory sample bombarded with D was analyzed.

+ NSTX tile sample was removed, cleaned, and analyzed.

— Li-O-D and Li-C-D chemistry from NSTX tiles match chemistry
observed in laboratory samples.

1 [Annealed J\ el :l:

Li-0-D __Lj-O Li-C- iti Y }
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Binding Energy (eV) Binding Energy (eV)

Similarity in tile and laboratory spectra validates laboratory technique. ||

4
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Intercalation and gettering observed in XPS

- Lithiated graphite chemistry changes with time.

0.80 - . , . - . : :
— Deposit lithium on laboratory sample. @ [ titum]
° 1 “m, 5“m _% 0.75- .
~ Wait in UHV (10-° mbar). % or0] }—#i%ﬂi
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o |
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Oxygen gettering active in UHV for 100+ hours

+ Experiment 0 | | | | |
— Deposit lithium. = ATJ211
— Wait in UHV (10-1° mbar). L A

[ A ATJ123
— Quantify surface
concentrations with XPS.

i 4
@
o

Exp. fit

» Gettering is a slow,
thermodynamic process
(10-100s of hours).

« Curve fit suggests an ultimate
oxygen surface concentration ol
0
of ~20%. 0 50 100 150 200 250 300
Time in UHV after Li deposition (hr)

O 1s surface concentration (%)

Over the course of ~100 hours in UHV (10-'° mbar), the
g | Ooxygen concentration increases from ~8% to more than 20%.

C.N. Taylor, et al., Journal of Applied Physics, Submitted 2013.  C-N. Taylor, et al. | 55th APS-DPP, Denver CO | November 13, 2013 12
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D bombardment increases O concentration to 20%

» Experiment

o Deposit 2 “m Iithium — 45 +—m— D" bombarded Li-graphite | '.' o m
] X 40 " —e— D’ bombarded virgin graphite 1
— D* bombardment to = 0 )
~9x10'% cm™. O 35} .
. )
— Quantify surface £ 30+ =
concentrations with XPS. 8 5[ )
C -
S 20) - .
. () i

+ Oxygen concentration O 15+ ] 2
increases dramatically upon D € 4oL %// _
. . . (D | /./ i
irradiation. o sl IZ/ 1

- Dramatic oxygen enhancement o ! ‘ ——_

observed only when lithium is o 2ym 10" . 10"
Virgin | Post-lithium Deuterium
present. . i 2
graphite | deposition fluence (cm™)
Large scatter in data suspected to be a
)y 4 consequence of surface morphology.
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Surface morphology effectively thins Li deposit

- Surface morphology results in larger effective surface area. Consequences:
— Effectively thinner lithium coverage.
— Faster intercalation into bulk graphite.
— Faster oxygen gettering.

Polished ATJ graphite NS tile sample

N S g N

Atomic force microscopy
1.3um (AFM) shows >1 um peaks
in 100 pm? domain.

b0 pm

100 p
100 ym

50 um 50 um

0 um”0 um Clusters [
“Mirror-like” and flakes

surface 10-40 um. §

Magnified
30nm

onm On I pm? domain, ~30 nm
1 Hm peaks observed.

S

54800 10.0kV 5.6mm x2.50k SE(U) 6/3/2011 15:57

— Opm 0 um
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Atomistic simulations used to model D retention

* Quantum-classical molecular dynamics (QCMD) is used to model the
C-Li-O-D system.

— Quantum mechanical method. 5000 independent random D trajectories
(Monte Carlo approach)

— Investigates electronic structure of many-
body systems.

— Cell: ~250 atoms, ~5000 D trajectories.
* Qualitative analyses:
1. Partial charges
« Assess charge state after D impact.

+ Binding pairs have opposite partial
charges.

2. Nearest neighbors
» Assess rest position of implanted D*.
* Binding is more likely when atoms are

| ighbors.
CloS€ neignbors OAK Krstic group at
RIDGE ornLUTK.

/ National Laboratory
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Simulations with 5% O indicate minimal retention

Initial atomistic simulations Experiments
« Matrix contained 5% oxygen. - Virgin graphite contains ~5% oxygen.
— Based on virgin graphite. - After D bombardment, oxygen
- Result: concentration increases to ~20%.

— <2% oxygen-deuterium

neutralization. __ 451 —=— D" bombarded Li—graph:iteI I I_' o (b) i
X 40 L=~ D" bombarded virgin graphite ]
c \l, 1.8% neutralization S 351 =
o 100 !
g ﬁ ( £ a0} "
re! = I
£ 80 3 25 1
© . ]
Li O 20 m
2 6 2 2
g s °f . ]
g 40 —_— S 10} %/' i
3 D(-charge i 50 IZ%' ]
ge] D D Tt S
’G\‘.) 20 C O 0 ! |16 A ......|17 .
S 2um |10 10
£ o . AN Virgin | Post-lithium | ~ Deuterium
cz'S “0 05 0.0 0.5 1.0 graphite | deposition | fluence (cm?)
Charges (e)
4 Repeat simulations with 20% oxygen concentration.

P.S. Krstic, et al., Fusion Engr. Des., 87 (2012) 1732-1736.
P.S. Krstic, et al., Phys. Rev. Letter, 110, 105001 (2013). C.N. Taylor, et al. | 55th APS-DPP, Denver CO | November 13, 2013 17
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Simulations show D prefers O as its ‘neighbor’

* Nearest neighbors analysis
— The composition of the simulation matrix is shown in the table.

— Percentage of deuterium’s proximate neighbor after coming to rest
shown in chart.

Matrix Composition

4 20% oxygen in

|| carbon leads to 27%
deuterium-oxygen
|\_ nearest neighbors.

(" 20% lithium in
carbon leads to 9%
deuterium-lithium

\ nearest neighbors. |

50

o

Nearest Neighbor Occurrence (%)

P Q R S T

Y When oxygen 1s present in the matrix, it becomes the predominant
nearest neighbor, an indication of binding pairs, to deuterium.
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Sputtering is lowest in matrix with 20% oxygen

Matrix Composition

Simulations show: o Q . S ;

— Matrix prepared with 20% lithium has &%t 20 2% 80%
lowest retention. o 2% | te% | oo
— Deuterium retention is highest in 90 RS
I 1 (o) r () .
matrix with 20% oxygen and no —e— Retention
lithium. S A / —m— Reflection]

— The ejection yield (sputtering) is at its
highest in the case of 20% Li in

A\

Probability per D (%)
N
© \
T T\

carbon.
— Sputtering is lowest in matrix with 20% —, o
Oxygen 10 N . | . | , | , L
— 15 _I b) I I I I‘
e - —m— Carbon
g [ + —e— Total
o L
5 1.0[ i
o
The presence of oxygen in the matrix s |
i > 0.5
reduces sputtering and enhances c §\§\
deuterium retention. R —F——
ir 0.0 1 1

/ P Q R S T
Matrix Composition
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Differentiating the role of oxygen and lithium

« What is happening?!?
» Experiments qualitatively find that oxygen plays a role in deuterium
retention.

» First Li-O-C-D simulations used 5% oxygen in carbon. Minute
effect.

» Return to experiments. Oxygen surface concentration increases to
~20% after D bombardment.

» Repeat simulations with 20% oxygen. Significant effect.
» Deuterium recycling suppressed in NSTX when using lithium.
» Simulations shows poor retention with lithium only.

* What is the role of lithium??!?

— Increase oxygen concentration in experiments
without lithium.

C.N. Taylor, et al. | 55th APS-DPP, Denver CO | November 13, 2013 20
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High O concentration not sustainable without Li

- Experimentally test case with 20% ‘ oo T

oxygen and no lithium. 40 | —®— D’ bombarded O-graphite o
Bombard with 35| —® D’ bombarded Li-graphite ‘/ |
— pombar W! Oxyger_]' | —A— D" bombarded virgin graphite
— Bombard with dueterium. 30 b -
— Quantify concentrations. - 1
— Examine retention. -
20 Post-O _

bombardment
||

15- >< =
10- . =

« Recall: D retention observed in XPS.
—@— D retention observed
—A— No retention chemistry

O 1s Surface Concentration (%)

—m— No retention chemistry %/508’“ \'\-/'\. ’
sp B gepostion ‘
ol L A
Virgin 6x10" 6x10"
Graphite D’ Fluence (cm™)

Oxygen concentration successfully increased, however cannot retain deuterium
without lithium. Lithium not only getters oxygen, it retains the oxygen!

-—/4/
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XPS spectra reveal PSI behavior in NSTX tlles

- XPS analysis of NSTX tiles revealed the following™:

— Procedure for quick recovery of passivated lithium :
surfaces.

— Tile regions that require additional lithium
conditioning.

— A minimum lithium threshold for D retention is
found between 50-500 nm.
« The Materials Analysis Particle Probe (MAPP)?2

— Provide shot-to-shot analysis of surface
chemistry.

— Operate during the between-shot window.
— Investigate sputtering and redeposition.
+ Applicability to other systems.
— Currently researching lithium on metals.
— Similar trends in oxygen behavior observed.

_ 4 §,=0.7 (#121238 @ 0.3 sec)

IC.N. Taylor, et al., Fusion Eng. Des., in press (2013).
2C.N. Taylor, et al., Rev. Sci. Instrum. 83, 10D703 (2012). C.N. Taylor, et al. | 55th APS-DPP, Denver CO | November 13, 2013 23
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Summary

» Oxygen is the dominant channel for retaining  Process of deuterium retention is
deuterium in lithiated graphite. reminiscent of childrens story...

» Lithium’s primary role is that of bringing
oxygen to the surface.

» lon implanted oxygen in graphite is weakly
bound compared to lithiated graphite.

“fIy” deuterium
> Lithium is necessary in order to retain flgl_dg{j" oxygen
oxygen in graphite. i lithium
“horse” carbon

C.N. Taylor, et al. | 55th APS-DPP, Denver CO | November 13, 2013 24
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Future work

Three possible sources of
oxygen:

1. Bulk sample
2. Ambience
*  Chamber
« Sources
3. Lithium deposit
- Evaporator loading.
* Inactive periods.

«  During and after
evaporation.

Hypothesis: 1on bombardment breaks down oxygen containing species
Y from within the lithium deposit and drives the oxygen to the surface.
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Simulation partial charges show D prefers O

* Interpreting “partial charges” data:
— Matrix R: 0.33 e (oxygen) neutralizes -0.33 e (deuterium).

c P Q R S T
x=C 100% 80% 60% 52% 80%
5 QL 20% 20% 16%
= go 20% 16% 20%
38 16%
L IR\ ' ' RN ' (WL T T
© 599 ‘..‘e)[\ /‘__‘g T P ]
2260 + [\ + \ + |\ .
o= - + t
52407 T \ T \ T |\ ]
2 B3 20 + ', + ) + \ .
= ° of e R IR B e o e
R f h i
® 3
N o
T n
ES
(e}
@]
<0
03 00 03 -03 00 03 -03 00 03 -03 00 03 -03 00 0.3
/4 Partial Charge (e)
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Simulation ‘nearest neighbors’ show D prefers O

* Interpreting “nearest neighbors” data.
— Deuterium preferentially resides near oxygen.

c P Q R S T
= 2 c 100% 80% 60% 52% 80%
5 QL 20% 20% 16%
= go 20% 16% 20%
S H
S0
B 580f
5§ 560
g % 40 |
£ 5 0p
0 |
580
8
1%
c 40
> L
@]
o [
0

2 3 1 2 3 1 2 3 1 2 3

4 Nearest Neighbor Distance (A)

Quantified results next. ..
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High O concentratoin not sustainable without Li

« Experimentally test case with T ]
20% oxygen and no lithium.

. L Ny -2 . C15-94.45%  _

~ Simulation time scale S S A .
~10-° sec. - .

— Experimental time scale | D2-6E15¢m™ O.1AS“—9'18% C1s-89.76%  _

~102 sec. ‘ RV Y '

-2 01s-16.44%

" O-5E17cm C1s-82.25% |
[ WA |

+ Experiment:
— Implant oxygen.
— Bombard with D.
— Quantify concentrations.
— Examine retention.

* Oxygen is depleted during
deuterium irradiation.

C1s-95.07% -
~ '

Normalized Intensity (a.u.)

~Virgin O1s-4.93%
. A

800 600 400 200 0
Binding Energy (eV)

Localized heating effects that may release the oxygen in

// ~10? sec are not resolvable in simulation time scale.
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