

Supported by

Broadening of divertor heat flux footprints with increasing number of ELM filaments in NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

R. Maingi², J.M. Canik¹, K.F. Gan³, T.K. Gray¹, E. Fredrickson², A.G. McLean⁴, P.B. Snyder⁵, V.A. Soukhanovskii⁴, and the NSTX-U Research Team

¹ORNL, ²PPPL, ³ASIPP, ⁴LLNL, ⁵GA

APS-DPP meeting **New Orleans, LA** Oct 27 - 31, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

• ELM heat flux characterization is important to determine requirement of ELM control system performance in future machines

• Relationship of wetted area (A_{wet}) to the size of ELM energy loss directly impacts peak heat flux (q_{peak})

• Larger A_{wet} allows larger total ELM energy loss (ΔE_{ELM}) to be acceptable, however uncertainty on A_{wet} remains unresolved yet

NSTX-U

RIDGE

- Introduction why ELM wetted area (A_{wet}) is important?
- Measurement techniques and examples in NSTX
- Relationship between # of ELM filaments and A_{wet} , its impact on ELM size dependence of A_{wet} and q_{peak}
- ELM stability regime with different toroidal mode number

Conclusions

OAK RIDGE

- Introduction why ELM wetted area (A_{wet}) is important?
- Measurement techniques and examples in NSTX
- Relationship between # of ELM filaments and A_{wet} , its impact on ELM size dependence of A_{wet} and q_{peak}
- ELM stability regime with different toroidal mode number

Conclusions

OAK RIDGE

Example of ELM striations to broaden heat flux profile in JET

• Number of striations, i.e. ELM filaments, observed on the outer divertor target increases from 3-5 to 10– 15 during the ELM rise time

 A_{wet} significantly increases compared to inter-ELM value, typically by factor 3-4

S. Devaux, JNM 2011

Acceptable ELMs for various I_p for ITER are predicted

A. Loarte, NF 2014

CAK RIDGE

- A_{wet} increase by up to a factor of 6 has been observed in JET
- I_p is key parameter for pedestal pressure, therefore ELM energy loss
- Necessary A_{wet} increase for a range of I_p to avoid divertor damage by ELMs

Outline

- Introduction why ELM wetted area (A_{wet}) is important?
- Measurement techniques and examples in NSTX
- Relationship between # of ELM filaments and A_{wet} , its impact on ELM size dependence of A_{wet} and q_{peak}
- ELM stability regime with different toroidal mode number

Conclusions

OAK RIDGE

D NSTX-U

NSTX: multiple radial heat flux profiles are averaged for data analysis

Outer divertor in LSN

- 2-D surface temperature data from IR camera are used for heat flux calc.
- Heat flux data in (x, y) plane is re-mapped to the (r, Φ) plane and all radial heat flux profiles are combined to create an average profile

$$\overline{q}_{peak,tor} = \sum \left(q_{peak,rad} \right) / N_{rad} \qquad \overline{\lambda}_{q,tor} = \sum \left(\lambda_{q,rad} \right) / N_{rad}$$

OAK

RIDGE

Peak heat flux and heat flux width are determined by total power and wetted area

CAK RIDGE

NSTX-U

• Total deposited power to divertor:

$$P_{div,IR} = \int 2\pi r \bar{q}_{tor}(r) dr$$

- Wetted area $A_{wet} = P_{div,IR} / \overline{q}_{peak,tor}$
- Integral heat flux width $\overline{\lambda}_{q,tor}^{\text{int}} = P_{div,IR} / 2\pi r_{peak} \overline{q}_{peak,tor}$ $= A_{wet} / 2\pi r_{peak}$
- Total deposited energy to divertor $W_{div,IR} = \int P_{div,IR} dt$

Temporal evolution and dependence on the ELM size of P_{div,IR} and A_{wet}

Example of heat flux profiles with 0 and 4-5 ELM striations show opposite heat deposition pattern in NSTX

OAK

RIDGE

- An ELM with no striations leads to a very peaked heat flux profile with high (> 5MW/m²) peak heat flux
- 4-5 ELM striations spread heat over a larger area, reducing the peak heat flux (~ 2MW/m²)

Outline

- Introduction why ELM wetted area (A_{wet}) is important?
- Measurement techniques and examples in NSTX
- Relationship between # of ELM filaments and A_{wet} , its impact on ELM size dependence of A_{wet} and q_{peak}
- ELM stability regime with different toroidal mode number

Conclusions

OAK RIDGE

ELM heat flux profile with 0 striation – A_{wet} decreases most significantly

• No striation seen during the whole ELM rise time

OAK RIDGE

- A_{wet} decrease is generally largest, up to ~40 50%
- q_{peak} keeps rising, A_{wet} continues to decrease during the ELM rise time

ELM heat flux profile with 3 striations – A_{wet} begins to rise

- * 3 4 filaments slightly raises A_{wet} but at a later stage striations disappear and A_{wet} decreases while power goes up
- Generally, A_{wet} can either increase or decrease for 3 striations

OAK RIDGE

ELM heat flux profile with 3 striations that reduces A_{wet}

• Three filaments are observed but A_{wet} decreases in this case $\rightarrow q_{peak}$ remains rather constant after peak power deposition

OAK RIDGE

ELM heat flux profile with 9 – 10 striations – A_{wet} increases and q_{peak} decreases

Only a few striations in the far SOL at initial stage of ELM rise → A_{wet} slightly decreases and q_{peak} reaches its maximum

OAK RIDGE

(D) NSTX-U

 Afterwards, 9 – 10 filaments appear and broaden the profile by a factor of ~2 → q_{peak} decreases even with rising ELM power

A_{wet} increases while ELM size remains constant and q_{peak} decreases with the number of observed striations

OAK RIDGE

- Two groups of ELM data
 - 0 4 striations for weaker shaping (κ ~1.9, δ ~0.5)
 - 2 9 striations for stronger shaping (κ ~2.5, δ ~0.75)
 - A_{wet} increases with the # of striations but the ELM size (energy ejected by an ELM, measured by IR camera) is independent of the # of filaments \rightarrow reduction of q_{peak}

Dependence of A_{wet} on ELM size shows both favorable and unfavorable trends depending on filament numbers

OAK

RIDGE

- Type-I and type-III ELMs show similar trend:
 - $\begin{array}{ll} & A_{wet} \mbox{ (therefore } \lambda_q) \mbox{ decreases or } \\ & \mbox{ increases during the ELM,} \\ & \mbox{ depending on filament structures} \end{array}$
 - The size of change becomes bigger with the size of ELM power
 → A_{wet} decrease or increase becomes larger for larger ELMs
- Larger ELM size gives bigger impact on expansion and contraction of A_{wet}

NSTX ELMs with 0 – 4 striations: A_{wet} decrease leads to q_{peak} increase with increasing ELM size for type-I ELMs

NSTX: A_{wet} decreases with ELM power \rightarrow q_{peak} increases

JET : A_{wet} increases with **ELM energy** $\mathsf{loss} \rightarrow \mathsf{q}_{\mathsf{peak}}$ constant

NSTX ELMs with 2 – 9 striations: A_{wet} increases and q_{peak} slightly rises with increasing ELM size for type-I ELMs

OAK RIDGE

- Moderate increase of A_{wet} leads to slight increase or constant q_{peak}.
- This trend is similar to the observation at JET and is more favorable

Outline

- Introduction why ELM wetted area (A_{wet}) is important?
- Measurement techniques and examples in NSTX
- Relationship between # of ELM filaments and A_{wet} , its impact on ELM size dependence of A_{wet} and q_{peak}
- ELM stability regime with different toroidal mode number

Conclusions

OAK RIDGE

ELMs can be explained by ideal MHD stability theory, with different toroidal mode number for different regime

OAK RIDGE

- Several types of ELMs are envisioned in the framework of ideal MHD theory
 - Edge (pedestal) current density (J_{edge})
 - → Peeling instability
 - Pressure gradient (p'_{edge})
 - \rightarrow Ballooning instability
 - Bootstrap current (J_{bs}) links J_{edge} and p'_{edge}
- Toroidal mode number (n) increases from peeling to the ballooning side

NSTX type-I ELMs are against kink/peeling boundary with lower toroidal mode number n

• ELMs in many tokamaks have peeling-ballooning nature (n=10 – 20)

OAK RIDGE

- Stability analysis shows NSTX is most unstable for low n numbers (n=1-5)
- ELITE calculation: NSTX ELMs are on the peeling side → low n-number is consistent with smaller number of ELM filaments in heat flux profile

EPED model predicts ITER ELMs to be against peeling boundary with low n-number like in NSTX

P.B. Snyder, NF 2011

OAK RIDGE

(D) NSTX-U

- Stability analysis shows that ITER pedestal will be against current-driven kink/peeling modes due to low collisionality and shaping
- Predicted n~3 10, closer to NSTX → ELM profile broadening might not be as effective as in JET

Important to better determine where ITER will sit on stability regime to estimate n-number, plus need some non-linear ELM calculations for the evolution of filament numbers ELM filament structure determines A_{wet} change and the # of striations can be used as a good metric; low # (0 – 3) generally reduces A_{wet} and higher # (> 3) increases it

For ELMs with low mode number, A_{wet} decrease leads to q_{peak} increase with increasing ELM size. For higher mode number, A_{wet} slightly increases and q_{peak} remains rather constant.

 ITER ELMs are predicted to have peeling nature, therefore low n ELMs could produce unfavorable trend → Need detailed study of stability analysis and the requirements for ELM mitigation

NSTX-U

RIDGE

Back-up Slides

ELM heat flux profile with 1 striation - A_{wet} decreases most of the time

- A clear filament appears during the ELM rise time but it is not enough to keep A_{wet} from decreasing
- Heat flux also keeps going up while ELM power goes up

OAK RIDGE

D NSTX-U

ELM heat flux profile with 5 striations to increase A_{wet}

- Filaments clearly increases A_{wet} and this keeps q_{peak} increase rather modest even with rapid power increase

OAK RIDGE