Towards a Predictive Capability for Local Helicity Injection Startup

J. L. Barr on behalf of the PEGASUS Team

University of Wisconsin-Madison 56th American Physical Society Division of Plasma Physics Meeting

> New Orleans, LA Oct. 28th, 2014

PEGASUS Toroidal Experiment

Local Helicity Injection (LHI) is a Promising Non-Solenoidal Startup Technique

- Unstable current streams form tokamak-like state via Taylor relaxation
- Appears scalable to MA-class startup

A Hierarchy of Predictive Models Being Developed for LHI Startup

1. Maximum I_p limits*

Helicity Conservation

 $I_p \leq I_{TL} \sim \sqrt{\frac{I_{TF}I_{inj}}{W}}$

2. 0-D power-balance $I_p(t)$

$$I_p \left[V_{LHI} + V_{IR} + V_{IND} \right] = 0; \ I_p \le I_{TL}$$

Simulated current stream

- 3. 3D Resistive MHD (NIMROD)**
 - See Sovinec, GP8.00047

*D.J. Battaglia, et al. Nucl. Fusion **51** (2011) 073029. *N.W. Eidietis, Ph.D. Thesis, UW-Madison, 2007. **J. O'Bryan, Ph.D. Thesis, UW-Madison, 2014. **J. O'Bryan, C.R. Sovinec, Plasma Phys. Control. Fusion **56** 064005 (2014)

2. 0-D Power-Balance: Lumped-Parameter Model for Predictive I_p(t)

- Model elements:
 - Inputs: $R_0(t)$, shape(t), $V_{LHI}(t)$, $\eta(t)$, $\ell_i(t)$
 - Low-A inductance, force-balance
- Reasonable agreement between calculated $I_{\rm p}(t)$ and measurement

 High-I_p: current drive dominated by PF induction, geometry evolution 0-D model predictions vs data

Physics Test for MA Startup on NSTX-U Requires Increased Helicity Injection Drive

• Confinement when $V_{LHI} \gtrsim V_{IND}$ is a critical issue

- At $I_p \sim 0.2$ -0.3 MA in PEGASUS

Knowledge of Confinement an Important Question for Predictability

• $I_p(t)$ model depends critically on η

• Dual confinement regimes?

Warm Core	Cool Edge
OH-like	Stochastic
Inductive drive	Reconnection
Low \tilde{B}/B	Large \tilde{B}/B

3. NIMROD Simulations Show I_p Growth Resulting from Reconnection in Edge

- Resistive MHD modeling (NIMROD)
- Divertor injection
 - Coherent current streams reconnect
 - Inject current rings

- Qualitative agreement to experiment:
 - Injector-localized MHD
 - Intermittent MHD bursts
 - $\quad \Delta I_p \sim I_{inj} \ jumps$
 - Reconnection driven anomalous ion heating observed (M.G. Burke, PP8.00095)

**J. O'Bryan, PhD. Thesis, UW Madison 2014

Understanding Injector Physics Enables High V_{ini} Operation

- High-power, low-PMI while immersed in scrape-off plasma
 - Cathode shaping mitigates cathode spots
 - Shield rings, local limiter prevent arc-back
- I_p increases with V_{inj}
- J_{inj}, V_{inj} depend on tokamak scrape-off density
 - Space-charge neutralization of streams

$$J_{INJ} = n_{edge} e_{\sqrt{\frac{2e}{m_e}}} \sqrt{V_{INJ}}$$

Advanced injectors with quiescent operation

Technology & Science Challenges for NSTX-U & Beyond

- Long-pulse startup (0.1 s)
 - Injector heat load
 - Edge density control
 - Plasma control
- High B_{TF}
 - Confinement scaling
 - Effective injector size
 - Initial tokamak formation
 - Reconnection with high guide field
- Plasma size scaling
- Close fitting wall
 - Potentially complicates relaxation

Injector technology evolving to meet physics challenges

Concave cathode

Frustum cathode, local limiter

High heatflux cathode, shield rings

PEGASUS-U to Address Physics, Technology for Scalable LHI Startup

- Long pulse startup (0.1 s)
- New central column (A~1.2)
 - Increased $B_{TF}(5x)$
 - New OH solenoid, PPPL (6x V-s)
- Enhanced divertor coils
- Upgraded High-V_{LHI} Injectors
 - Remotely insertable
- Core diagnostics:
 - Multipoint TS
 - CHERS via DNB
- Supporting the 5 year plan for NSTX-U

PEGASUS-U

Moving Towards Predictable, MA-Class, Non-Solenoidal Startup

- A hierarchy of models is being developed for LHI startup:
 - Max I_p: helicity conservation, Taylor relaxation
 - $I_p(t)$: 0-D power-balance (future: TSC)
 - Detailed dynamics: resistive MHD (NIMROD)
- Outstanding issues:
 - Scaling to high toroidal field, longer-pulse, large size
 - Confinement, stability in LHI drive dominant regime
 - Edge density, J_{inj} control strategies
 - Advanced injector development
- PEGASUS-U will address critical LHI physics issues for NSTX-U

K.E. Thome talk: next this session, GO3 PEGASUS group posters: session PP8

Outboard LHI Provides Robust Startup on the PEGASUS ST

Controlling Plasma-Material Interaction is Enabling High V_{INJ} Operation

- Injector requirements include
 - $\ Large \ A_{inj}, \ J_{inj}$
 - V_{inj} > 1 kV
 - $\Delta t_{pulse} \sim 10\text{--}100 \text{ ms}$
 - Minimize PMI
 - ...all adjacent to tokamak LCFS
- Advanced injector design enables high V_{inj}
 - Cathode shaping to mitigate cathode spots
 - Shielding of cathode, insulators to prevent injector breakdown
 - 3x improvement in V_{inj} , Δt_{pulse}

Voltage of quiescently operating injectors (red) and voltage after breakdown of overdriven injectors (black)

Technology & Science Challenges for NSTX-U & Beyond

- Long-pulse startup (100ms)
 - Injector heat load
 - Edge density control
 - Plasma control
- High B_{TF}
 - Confinement scaling
 - Effective injector size
 - Initial tokamak formation
 - Reconnection with high guide field
- Close fitting wall
 - Potentially complicates relaxation

Injector technology evolving to meet physics challenges

Concave cathode: Cathode spots near BN \rightarrow PMI

Frustum cathode,

local limiter:

Cathode spot control, but arc-back

Stepped shielding: Mitigate spots & arc-back, but heat-load cracking

Tests of Various Injector Concepts Favor Smaller A_{INJ}, High V_{INJ}

- Tests of large-area passive electrodes show reduced effective A_{INJ}
 - Integrated metallic electrode surface
 - Cathode spot emission

Above: integrated electrode injector assembly

- Large area gas-effused Mo Plate
 - Hollow cathode emission
 - Non-uniform J_{INJ} , effective $A_{INJ} = 0.15 A_{GEOMETRIC}$
- Conclusion: Arc-based injector system most effective path to maximize HI rate

LHI Injects Current Streams that Relax, Form Tokamak-Like Plasma

**D

Helicity Balance, Taylor Relaxation Criteria Set Max Achievable I_p from LHI

Helicity balance in a Tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, \mathrm{d}^{3} \mathrm{x} - 2\frac{\partial \Psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot \mathrm{d} \mathbf{s} \quad \Longrightarrow \quad \mathbf{I}_{p}$$

• Helicity injection provides an effective loop voltage^{*,**}:

Taylor relaxation of a force-free equilibrium:

 $\leq \frac{A_p}{2\pi R_0 \langle \eta \rangle} \left(V_{ind} + V_{eff} \right)$

Global Helicity Balance, Taylor Relaxation Limits Confirmed

D.J. Battaglia, et al. *Nucl. Fusion* **51** (2011) 073029. N.W. Eidietis. *Non-inductive startup of the Pegasus Spherical Torus using Localized washer-gun current source*, Ph.D. Thesis, UW-Madison, 2007. THE UNIVERSITY

MADISO

Experiments demonstrate dependence on the width of the driven current layer

- Relaxation current limit scales as $w^{-1/2}$
- One-gun discharges had higher limits than corresponding three-gun cases, indicating the gun array was misaligned:

Internal Measurements Show Null Formation, J(R,t) Throughout LHI Discharge Evolution

- Initial relaxation to tokamak-like topology coincident with inboard null formation
 - Injected current filaments perturb vacuum **B**
 - B_z must be sufficiently low and/or I_{inj} sufficiently high for null to form
- Hall probe^{*} $B_Z(R)$ provides $J_{\phi}(R)$ evolution

- Predicted field null observed

²⁻D force free current model

*: Bongard et al., Rev. Sci. Instrum. 81, 10E105 (2010)

2. When I_p(t) < Taylor Limit 0-D Power Balance Model Predicts I_p(t)

• Lumped parameter model + helicity conservation:

$$I_p \left[V_{eff} + V_R + V_{PF} + V_{Lp} \right] = 0$$

- V_{eff}: From helicity injection
- V_R : Resistive dissipation from assumed flat Spitzer $T_e(R,t) = 70eV$
- V_{PF}: Poloidal induction voltage
- V_{Lp}: Voltage due to plasma self-inductance
- Inputs: $R_0(t)$, a(t), $Ip(t_0)$, $<\eta_0>$, $\kappa(t)$, $\ell_i(t)$
 - Analytic low-A descriptions of L_p , B_z , plasma shape
- Differential equation in $I_p(t)$ solved when $I_p(t) < I_{Taylor}(t)$

Poynting's Theorem Applied at Plasma Boundary Defines Current Sources & Sinks

$$\underline{I_p V_s} = \iiint \frac{\partial}{\partial t} \left(\frac{B_{\theta}^2}{2\mu_0} \right) dV + \underline{I_p^2 R_p} - \underline{I_p V_{NICD}}$$

Plasma surface voltage

- Inductive drive from OH, PF-ramping
- Self-inductance: contribution from *external* fields

Internal magnetic energy

Self-inductance: contribution from *internal* fields, static boundary

Resistive dissipation

- Uniform, constant Spitzer resistivity assumed

Non-inductive current drive

- Local helicity injection

$$V_{s} = -\frac{\partial}{\partial t} \left(\psi_{OH} + \sum_{i} \psi_{PF,i} + L_{e} I_{p} \right)$$

$$\frac{1}{I_p} \frac{\partial}{\partial t} \left(W_{B,p} \right) = \frac{1}{I_p} \frac{\partial}{\partial t} \left(\frac{1}{2} L_i I_p^2 \right)$$

$$V_{R} = I_{p}R_{p} = I_{p}\left(\frac{\left\langle \eta_{p}\right\rangle 2\pi R_{0}}{A_{p}}\right)$$

$$V_{NICD} = V_{eff} \approx \frac{A_{inj}B_{\phi,inj}}{\Psi_T}V_{inj}$$

Plasma Self-Inductance Modeled with Analytic, Low-A Approximations

• Plasma self-inductance is partitioned into internal, external components:

$$L_p = \underline{L_i} + \underline{L_e}$$

• External component L_e is heavily aspect-ratio dependent:

$$\underline{L_e} = \mu_0 R_0 \frac{a(\varepsilon)(1-\varepsilon)}{1-\varepsilon+\kappa b(\varepsilon)} \qquad a(\varepsilon) = (1+1.81\sqrt{\varepsilon}+2.05\varepsilon)\ln\left(\frac{8}{\varepsilon}\right) - (2.0+9.25\sqrt{\varepsilon}+1.21\varepsilon) \\ b(\varepsilon) = 0.73\sqrt{\varepsilon}(1+2\varepsilon^4-6\varepsilon^5+3.7\varepsilon^6) \\ \text{where} \quad \varepsilon = \frac{1}{A} \qquad \text{*S.P. Hirshman and G.H. Nielson 1986 Phys. Fluids 29 790}$$

• Internal component decreasing in time (typically $l_i = 0.5 \rightarrow 0.2$):

$$W_{B,p} = \iiint_{V_p} \frac{B_{\theta}^2}{2\mu_0} dV = \frac{1}{2} L_i I_p^2 = \frac{1}{2} \left(\frac{\mu_0 V_p}{C_p^2} \ell_i \right) I_p^2$$

Plasma Self-Inductance Modeled with Analytic, Low-A Approximations

• Plasma self-inductance is partitioned into internal, external components:

$$L_p = \underline{L_i} + \underline{L_e}$$

• External component L_e is heavily aspect-ratio dependent:

• Internal component decreasing in time (typically $l_i = 0.5 \rightarrow 0.2$):

$$W_{B,p} = \iiint_{V_p} \frac{B_{\theta}^2}{2\mu_0} dV = \frac{1}{2} \underline{L_i} I_p^2 = \frac{1}{2} \left(\frac{\mu_0 V_p}{C_p^2} \ell_i \right) I_p^2$$

- Applied vertical field provides force-balance and inductive loop-voltage
 - ψ_{PF} estimated with Hirshman & Nielson* mutual inductance-like M_v equation

$$\frac{V_{PF}}{\partial t} = \frac{\partial}{\partial t} \left(\sum_{i} \psi_{PF,i} \right) \approx \frac{\partial}{\partial t} \left[M_V \pi R_0^2 B_V \Big|_{R_0} \right] \qquad c(\varepsilon) = 1 + 0.98\varepsilon^2 + 0.49\varepsilon^4 + 1.47\varepsilon^6
\text{where} \qquad M_V(\varepsilon,\kappa) = \frac{\left(1 - \varepsilon\right)^2}{\left(1 - \varepsilon\right)^2 c(\varepsilon) + d(\varepsilon)\sqrt{\kappa}} \qquad c(\varepsilon) = 0.25\varepsilon \left(1 + 0.84\varepsilon - 1.44\varepsilon^2\right)
\text{*S.P. Hirshman and G.H. Nielson 1986 Phys. Fluids 29 790}$$

- B_v required for force-balance is aspect-ratio and shape dependent
 - Uses Mitarai & Takase* formula for B_v for force-balance at low-A with κ :

$$B_{V} = \frac{\mu_{0}I_{p}}{4\pi R_{0}} \left\{ \frac{1}{\mu_{0}} \frac{\partial L_{e}}{\partial R} + \frac{\ell_{i}}{2} + \beta_{p} - \frac{1}{2} \right\}$$

*O. Mitarai and Y. Takase 2003 Fusion Sci. Technol.

Low-A, Analytic Models Approximate V_{PF}

- Applied vertical field provides force-balance and inductive loop-voltage
 - ψ_{PF} estimated with Hirshman & Nielson* mutual inductance-like M_v equation

- B_v required for force-balance is aspect-ratio and shape dependent
 - Uses Mitarai & Takase* formula for B_v for force-balance at low-A with κ :

$$B_{V} = \frac{\mu_{0}I_{p}}{4\pi R_{0}} \left\{ \frac{1}{\mu_{0}} \frac{\partial L_{e}}{\partial R} + \frac{\ell_{i}}{2} + \beta_{p} - \frac{1}{2} \right\}$$

*O. Mitarai and Y. Takase 2003 Fusion Sci. Technol.

System Represented by ODE Initial Value Problem

$$\frac{\partial I_{p}}{\partial t} = -\frac{\frac{1}{2}\frac{\partial L_{i}}{\partial t} + \frac{\partial L_{e}}{\partial t} + R_{p} + \frac{\partial}{\partial t}\left[M_{V}\pi R_{0}^{2}\left(\frac{B_{v}}{I_{p}}\right)\right]}{L_{p} + M_{V}\pi R_{0}^{2}\left(\frac{B_{v}}{I_{p}}\right)}I_{p} + \frac{V_{OH} + V_{eff}}{L_{p} + M_{V}\pi R_{0}^{2}\left(\frac{B_{v}}{I_{p}}\right)}$$

• At initial relaxation to tokamak-like state:

– Initial value from Taylor limit

- If I_{p, Pow. Bal.} > I_{p, Taylor}: follow Taylor limit
- Else: follow power-balance

Plasma Parameters Constitute Power-Balance Inputs

- $I_{p}(t_{0})$
 - Initial condition to DE solver
- Shape
 - $R_0(t), a(t), \kappa(t), \delta(t)$
- Plasma parameters
 - $< \eta >$ assumed constant, Spitzer
 - $-\beta_p=0$
 - − $l_i: 0.5 \rightarrow 0.2$
- LHI parameters

 $- A_{inj}(t), V_{inj}(t)$

Time [ms]

\bigcirc LHI Plasmas Undergo Two-Phase I_p(t) Evolutions

- Low I_p: Taylor limited
 - Set by plasma geometry, I_{inj}

- Higher I_p: power-balance
 - Balance of LHI, inductive effects, resistive losses

Using 0-D Model as Interpretive Tool Gives Insight into LHI Current Dynamics

 Inductive voltages dominated by geometric evolution

- Geometry evolution ~ 3 V
- PF ramping ~ 1 V
- Inductive reactance ~ 4 V

Testing and Calibration of the Model Proceeding on Multiple Fronts

$$I_{p}V_{s} = \frac{\partial}{\partial t} (W_{B,p}) + I_{p}^{2}R_{p} - I_{p}V_{NICD}$$

Plasma surface voltage

 $V_{s} = -\frac{\partial}{\partial t} \left(\psi_{OH} + \sum_{i} \psi_{PF,i} + L_{e} I_{p} \right)$

Internal magnetic energy

Non-inductive current drive

 $\frac{1}{I_p}\frac{\partial}{\partial t}\left(W_{B,p}\right) = \frac{1}{I_p}\frac{\partial}{\partial t}\left(\frac{1}{2}L_iI_p^2\right)$

Resistive Dissipation

 $V_{R} = I_{p}R_{p} = I_{p}\left(\frac{\eta_{p}2\pi R_{0}}{A_{r}}\right)$

I_p(t) compared for various plasma evolutions

Approximations for ψ_s(t), W_m(t), L_i(t) calibrated to experiment

Thomson Scattering

TF variations

Upgraded injector systems to vary V_{eff}

J.L. Barr, APS DPP 2014

 $V_{NICD} = V_{eff}$

Model Applied to NSTX-U Geometry for Initial $I_p \sim 1$ MA Start-up Scenario Prediction

*C. Neumeyer et all (2009) 23rd IEEE/NPSS Symposium on Fusion Engineering

**C. Neumeyer (2001) "NSTX Internal Hardware Dimensions" http://nstx.pppl.gov/nstx/Engineering/NSTX_Eng_Site/Technical/Machine/NSTX_Engr_Machine_Dims_cm.html

Current Growth During LHI Correlated with Bursts of MHD Activity

Measured burst properties include

- Two primary spectral components
 - $n=1 \Longrightarrow 10-20 \text{kHz} \textcircled{a} R_{inj}$, line-tied
 - n=0 rightarrow <5 kHz, plasma motion
- Typically correlates with sharp I_p increase

NIMROD simulations produce bursty MHD

- Bursts from transient reconnection events
- Qualitative agreement with experiment

Bursts show n=1

- Current multiplication, transport accompanied by MHD activity
- Two common spectral features
 - High-frequency 10-20 kHz n = 1
 - Low-frequency < 5 kHz n = 0
- n = 1 mode consistent with line tying
 - Activity localized near injector radius
 - Toroidal asymmetry in
- n = 0 localized to plasma interior
 - Inward radial motion

- NIMROD shows magnetic reconnection during LHI
 - Ion heating commonly observed in reconnection experiments*

- Consistent with ion cyclotron heating mechanism**
 - Pegasus LHI MHD spectra show significant power in IC resonance region

Predictive Understanding of Plasma Impedance Required for Projecting to Higher Ip

- Determines feasible V_{INJ}, A_{INJ}, I_{INJ}
 and demands on power system
- Governed by plasma physics of arc source and tokamak edge
 - Low I_{INJ} : Double layer $J_{INJ} \sim V_{INJ}^{3/2}$
 - High I_{INJ} : Space charge neutralization 10 of e-beam by edge plasma

$$J_{INJ} = n_{edge} e_{\sqrt{\frac{2e}{m_e}}} \sqrt{V_{INJ}}$$

- n_{edge} dependence to be validated
 - Assuming $n_{edge} \sim fill pressure$

Ramp-up I-V characteristics for Pegasus injectors agrees with 2-parameter model across wide range of fill pressures

