H-mode Characteristics and ELM Dynamics at Near-Unity Aspect Ratio

Kathreen E. Thome on behalf of the PEGASUS Team

University of Wisconsin-Madison 56th American Physical Society Division of Plasma Physics Meeting

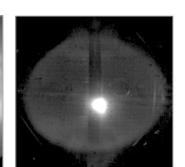
> New Orleans, LA Oct. 27-31, 2014

PEGASUS Toroidal Experiment

H-mode Readily Accessible at Near-Unity A

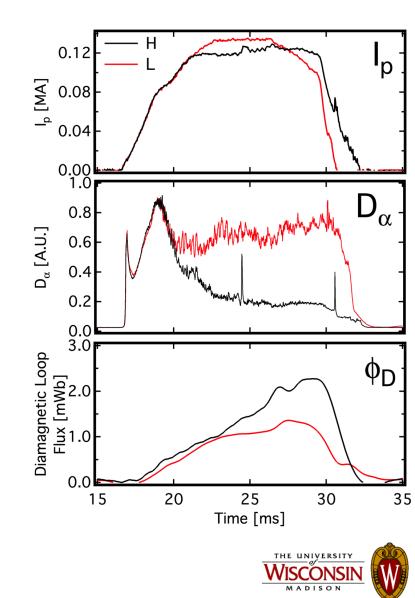
 P_{OH} 0.6 P_{LH_ITPA2008}¹ [MM] P_{LH_Aspectratio} $A \approx 1 \rightarrow \text{low } B_T \rightarrow \text{low } P_{LH}$ 0.4 പ $P_{IH} \sim n_{o}^{0.7} B_{T}^{0.7} S$ 0.2 0.0 0.15 0.05 0.10 0.20 $I_{p}[MA]$ 40 Limited Near Diverted 30 Diverted Magnetic topology similar in $A \approx 1.2$ o 20limited and diverted at $A \approx 1$ 10 0 0.0 0.2 0.4 0.6 0.8 1.0 Ψ_{N}

K.E. Thome, APS-DPP 2014


¹ Nucl. Fusion, **47**, S82 (2007) ² Plasma Phys. Control. Fus., **46**, A227 (2004)

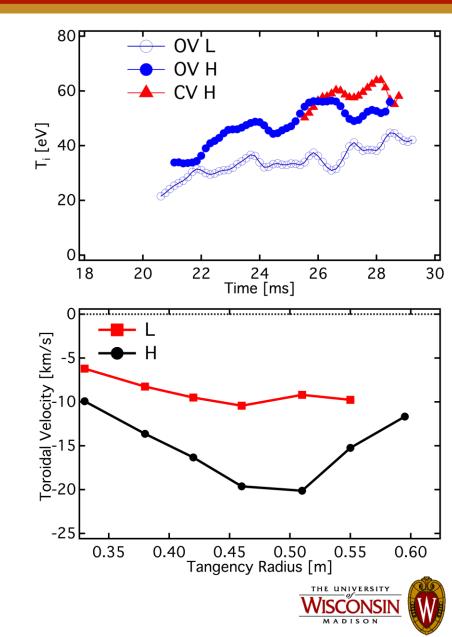
Ohmic H-mode Plasmas have Standard Signatures

Limited L

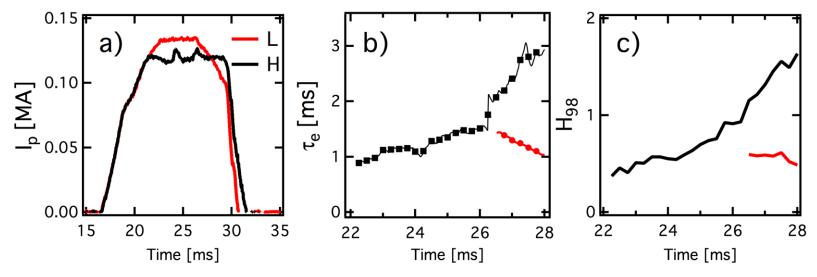


Limited H

Near-diverted H


- H-mode achieved via HFS fueling
- Quiescent edge
- Reduced D_{α} , Increased ∇D_{α}
- Large and small ELMs
- Bifurcation in ϕ_D
 - Transport equilibrium not attained

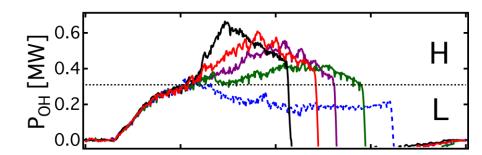
T_i(0) and Edge Shear Increase in H-mode


- Impurity T_i(0) doubles
 - CV only seen in core H-mode plasmas

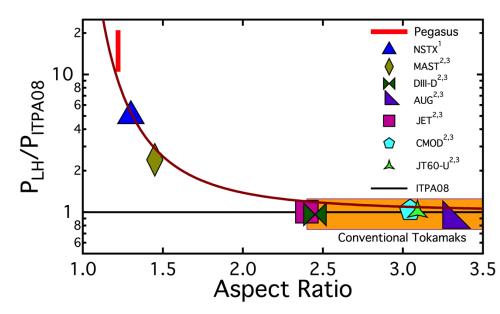
- Chordally-integrated velocity profiles show increased shear in the outer region in H-mode
 - Indirect evidence of E_r well

Energy Confinement Improves in H-mode

- τ_{e} from time-evolving magnetic reconstructions
- L-mode: $\tau_e \sim 1.5$ ms, $H_{98} \sim 0.5$
- H-mode: $\tau_{e} \sim 3 \text{ ms}$, $H_{98} > 1$
 - Short pulse length \rightarrow transport equilibrium not yet reached



K.E. Thome, APS-DPP 2014



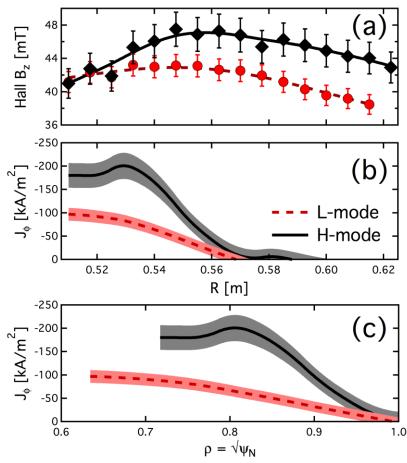
P_{LH} Increasingly Diverges from Expectations as $A \rightarrow 1$

- P_{LH} studied by varying P_{OH}, n_e
 - n_e dependence observed

- PEGASUS P_{LH}/P_{ITPA08} ≈ 10
- P_{LH}/P_{ITPA08} continues to increase as A →1

- ¹ Nucl. Fusion, **50**, 064010 (2010)
- ² Journal of Physics: Conference Series, **123**, 012033 (2008) THE UNIVERSITY

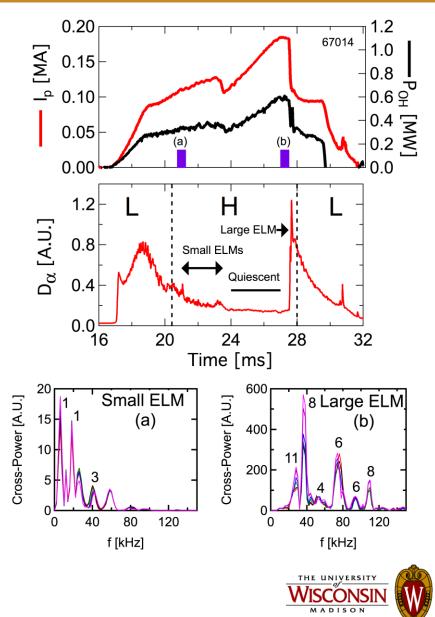
³ <u>Tokamaks</u>, 4th ed. (2011), p 630


K.E. Thome, APS-DPP 2014

Current Pedestal Measured with High Time and Space Resolution

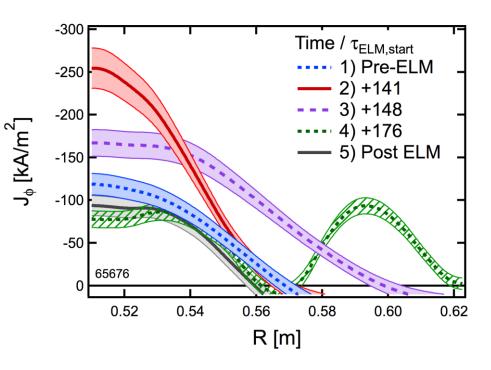
 J_φ(R,t) from Hall Probe B_z measurements^{1,2}

- Clear current pedestal observed
 - H scale length ~ 2 cm
 - L scale length ~ 4 cm


¹ *Rev. Sci. Instrum.*, **81**, 10E105 (2010) ² *Phys. Rev. Lett.*, **107**, 035003 (2011)

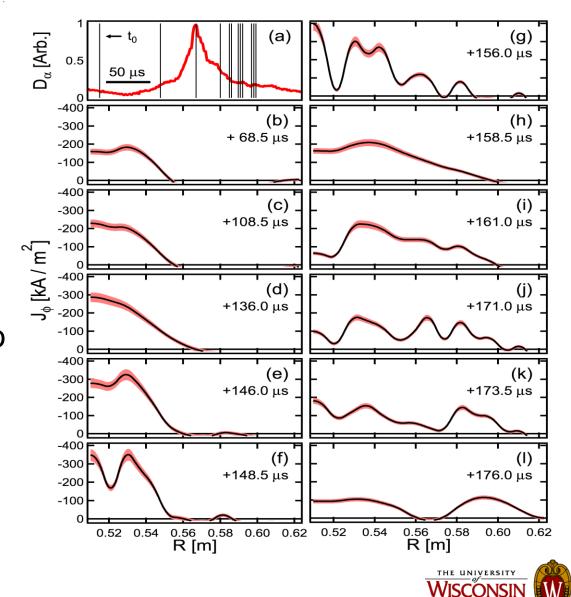
Large (Type I) and Small (Type III) ELMs are Seen

- STs magnetic structure opposite of ATs
 - Large ("Type I"): intermediate-n
 - Infrequent, violent, $P_{OH} >> P_{LH}$
 - Small ("Type III"): low-n
 - Common, less perturbing, P_{OH} ~ P_{LH}


- Simultaneously unstable modes
 - Dominant n = 8 grows continuously
 - Non-dominant components fluctuate prior to crash

Large ELM J_{edge}(R,t) Dynamics Measured Throughout Single ELM Cycle

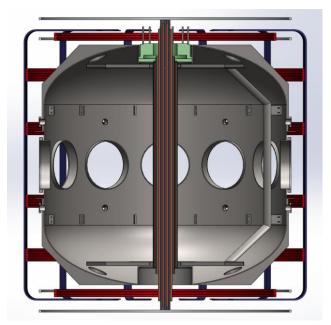
- Complex J_{edge}(R,t) evolution
 - 1) Modest but steep pedestal
 - 2) Rapid buildup until crash
 - 3) Collapse with wider pedestal gradient
 - 4) Current-hole filament ejection
 - 5) Recovery: lower than pre-ELM pedestal



Closer Inspection of J_{edge} Reveals Complex Dynamic Behavior

 Current profile evolution through ELM cycle shows complex multimodal behavior

- Opportunities for detailed comparisons to nonlinear MHD simulations
 - E.g. NIMROD, JOREK, BOUT++



MADISON

PEGASUS-U Will Provide Access to Nonlinear ELM Studies and H-mode Physics

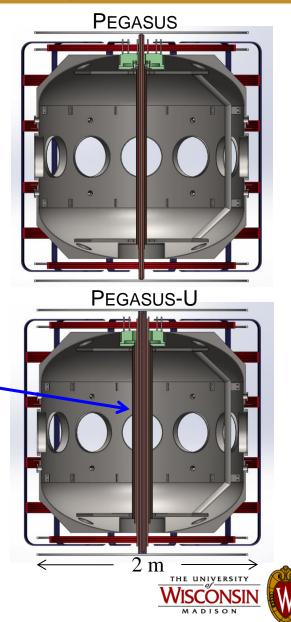
- H-mode readily accessible at A ≈ 1
 - Initial PEGASUS results constrained by short pulse and limited V-s
- PEGASUS-U will have 6x V-s, 4x pulse length (0.1 s)
 - p(R,t), J(R,t), $v_{\Pi}(R,t)$ through ELM cycles
 - ELM modification and mitigation
 - J_{edge} injection, C-pellet pacing
 - Neoclassical physics tests

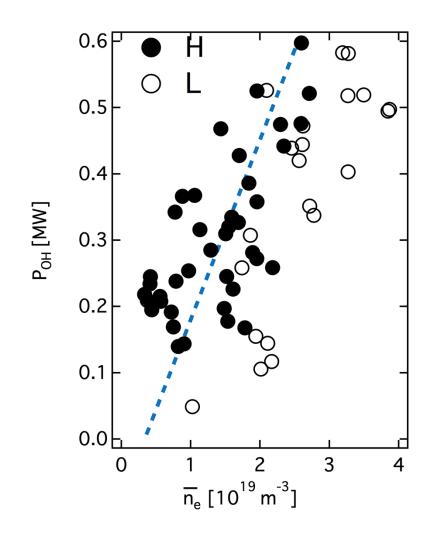
PEGASUS-U: new centerstack, divertor coils

Conclusions: A ~ 1 Operation Enables Studies of AT Physics

- H-mode achieved in plasma with simple diagnostic access
 - Standard characteristics: Pedestal; low D_{α} ; increased τ_e ; $H_{98} \ge 1$; etc.
 - J_{edge}(R,t) dynamics measured through ELM cycle
- Features unique to low-A emerging
 - Strong P_{LH} threshold scaling with A
 - Relative mode numbers at low-A opposite that of high-A
- Overall, complements experiments on larger fusion facilities
 - Detailed measurements can elucidate more limited results on larger facilities

For more details, please see the Wednesday afternoon poster session: PP8.00091: Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity *A* PP8.00097: Probe Measurements in the H-mode Pedestal Region in the Pegasus Toroidal Experiment


BACKUP SLIDES



PEGASUS-U Initiative: Advancing Non-Solenoidal Startup and AT Physics

- Mission
 - Physics and technology of LHI
 - Nonlinear ELM dynamics, H-mode physics
 - Tokamak stability limits: $A \sim 1$ high \mathbb{B}_{T} regime
- Facility enhancements
 - New centerstack assembly
 - B_T increases 5x
 - ⊗t_{pulse} ~ 100 msec
 - V-sec increases 6x (PPPL)
 - Improved separatrix operation
 - NSTX-U relevant LHI injector arrays
 - Diagnostics: multipoint TS; CHERS via DNB

Limited P_{LH} Follows Standard n_e Dependence

- P_{OH} = 0.1-0.6 MW
 - Density dependence
 - No observed n_emin
 - Much greater than scaling predictions