

Supported by

Characteristics of Neoclassical Toroidal Viscosity in NSTX and KSTAR for Rotation Control and the Evaluation of Plasma Response

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

S. A. Sabbagh¹, R.E. Bell², T.E. Evans³, N. Ferraro³,
 I.R. Goumiri⁴, Y.M. Jeon⁵, W.H. Ko⁵, Y.S. Park¹,
 K.C. Shaing⁶, Y. Sun⁷, J.W. Berkery¹, D.A. Gates²,
 S.P. Gerhardt², S.H. Hahn⁵, C.W. Rowley⁴

¹Department of Applied Physics, Columbia University, New York, NY
 ²Princeton Plasma Physics Laboratory, Princeton, NJ
 ³General Atomics, San Diego, CA
 ⁴Princeton University, Princeton, NJ
 ⁵National Fusion Research Institute, Daejeon, Republic of Korea
 ⁶National Cheng Kung University, Tainan, Taiwan
 ⁷ASIPP, Hefei Anhui, China

56th Annual APS DPP Meeting

October 28th, 2014

New Orleans,

Louisiana

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

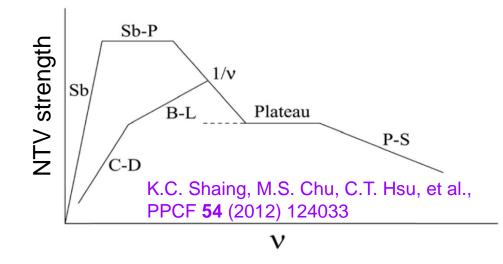
Science

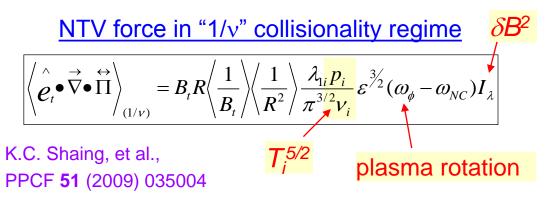
The physical characteristics of NTV investigated in tokamaks for rotation control and the evaluation of plasma response

Motivation

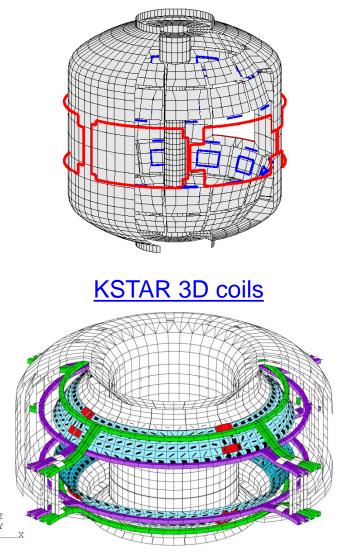
- □ Low magnitude ($\delta B/B_0 \sim O(10^{-3})$) 3D magnetic fields are used favorably used in tokamaks (e.g. ELM suppression, MHD mode control)
- 3D fields of this magnitude can produce neoclassical toroidal viscosity (NTV), which can:
 K.C. Shaing, et al., Nucl. Fusion 54 (2014) 033012
 - Alter plasma rotation

K.C. Shaing, et al., IAEA FEC 2014 Paper TH/P1-11

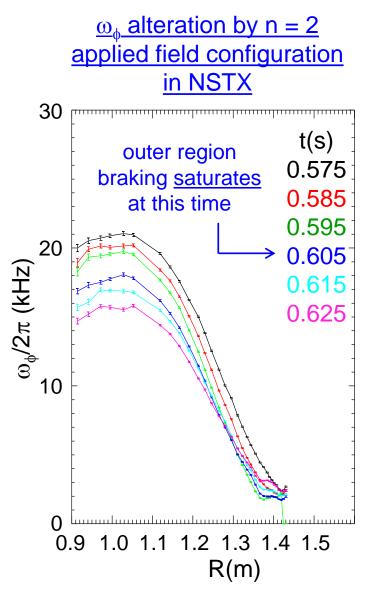

- Significantly reduce fusion gain, Q, by increased alpha particle transport $(\partial B/B_0 \sim O(10^{-4}))$
- □ Therefore, it is important to understand NTV in tokamaks, backed by accurate ($\sim O(1)$) quantitative modeling

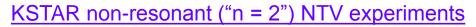

Outline

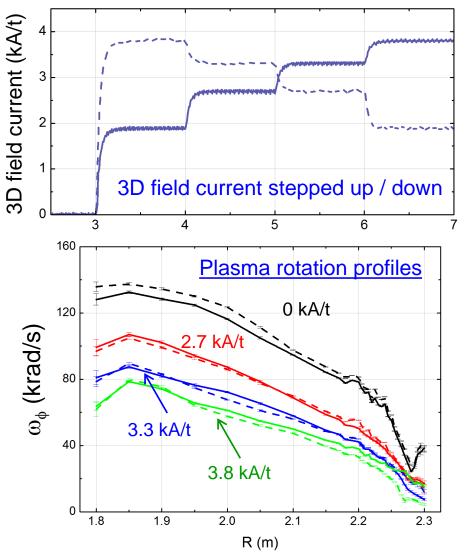
- NTV physical characteristics; comparison of theory to experiment
- NTV assessment of plasma response
- Application of NTV to plasma rotation control for NSTX-U


Neoclassical Toroidal Viscosity (NTV) studied through the application of 3D fields in NSTX and KSTAR

□ Theory: NTV strength varies with plasma collisionality ν , δB^2 , rotation

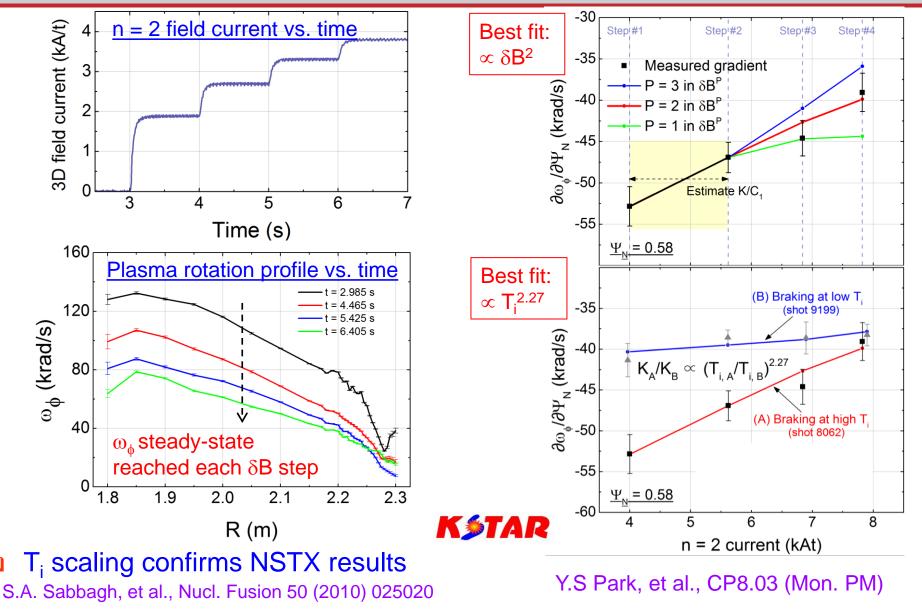

NSTX 3D coils


NTV physical characteristics are generally favorable for rotation control


- Non-resonant NTV characteristics (e.g. in NSTX and KSTAR)
 - Experimentally, NTV torque, T_{NTV} , is radially extended, with a relatively smooth profile
 - NTV changes continuously as the applied 3D field is increased
 - **Can alter the** ω_{ϕ} profile without mode locking
 - T_{NTV} is not simply an integrated torque applied at the plasma boundary, but a radial profile e.g. ω_{ϕ} shear can be changed
 - potential for mode control
- Questions remain
 - e.g. Is there hysteresis when ω_{ϕ} is altered by NTV?

Suggested in: Y. Liang, et al., NF 50 (2010) 025013

KSTAR experiments show essentially no hysteresis in steady-state ω_{ϕ} profile vs. applied 3D field strength


- Steady-state rotation profile reached at each 3D field level is generally independent of the starting point of ω_φ
- Absence of hysteresis further confirmed in very recent experiments with 6 steps in 3D field current

5

(I) NSTX-U

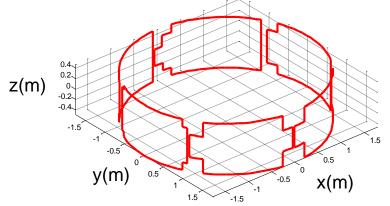
KSTAR experiments show Neoclassical Toroidal Viscosity varies as δB^2 , and T_i^{2.27}, expected by theory

6

3D field perturbation experiments measure the T_{NTV} profile in NSTX

□ Apply/change 3D field on a timescale significantly faster than momentum diffusion time, τ_m

□ Analysis before/after 3D field application isolates T_{NTV} in the momentum diffusion equation; $-dL/dt = T_{NTV}$ (other parameters ~ constant)


□ dL/dt measured experimentally and compared to theoretically computed T_{NTV} on this timescale

□ Important, as dL/dt profile changes significantly on timescales > τ_m , (diffuses radially, broadens, leads to significant error compared to T_{NTV})

Focus on non-resonant applied 3D field configurations to avoid driving strong MHD modes

Theoretical NTV torque density profiles, T_{NTV} are computed for NSTX using theory applicable to all collisionality regimes

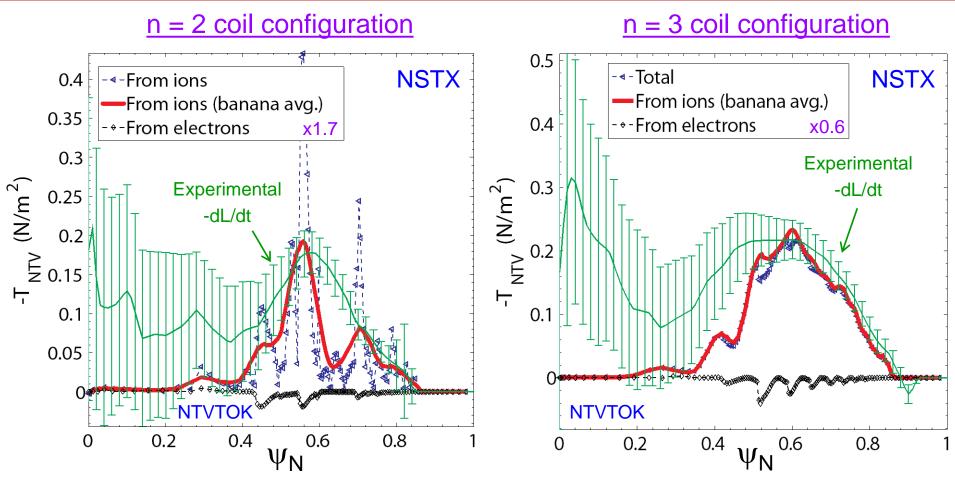
Non-axisymmetric coils fully modelled in 3D

NTV analysis of NSTX – data interfaced to NTVTOK

(Y. Sun, Liang, Shaing, et al., NF 51 (2011) 053015)

- Use Shaing's "connected NTV model", covers all v, superbanana plateau regimes (K.C. Shaing, Sabbagh, Chu, NF 50 (2010) 025022)
- \hfill Full 3D coil specification and δB spectrum, ion and electron components computed

3D field definition

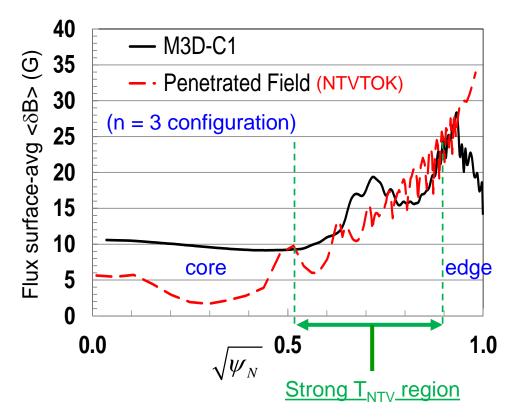

$$\delta B = \vec{b} \bullet \left(\vec{B} / B \right) + \left(\vec{\xi} \bullet \nabla B \right)$$

plasma displacement

General considerations

- In tokamaks, ξ not measured in detail, can lead to large error
- "Fully-penetrated field constraint" used to define ξ $\left(\vec{B}_{2D} \bullet \nabla \vec{\xi} = \vec{b}\right)$
- Computed $|\xi| \sim 0.3$ cm << $\varepsilon^{0.5}\rho_i$, therefore, ion banana widthaveraging is used for ion channel
 - Can explain why strong resonant peaks in NTV profile are not observed in experiment

Measured NTV torque density profiles quantitatively compare well to computed T_{NTV} using fully-penetrated 3D field



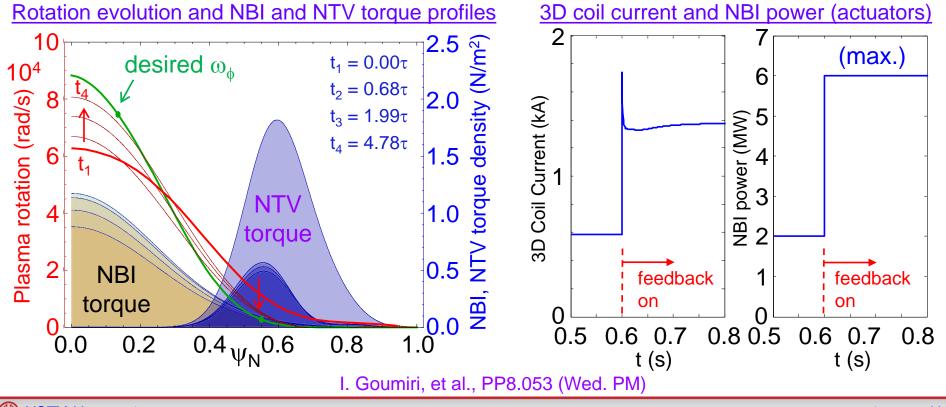
 \Box T_{NTV} (theory) scaled to match *peak* value of measured *-dL/dt*

- □ Scale factor $((dL/dt)/T_{NTV}) = 1.7$ and 0.6 for cases shown above O(1) agreement
- O(1) agreement using "fully-penetrated 3D field" indicates that plasma response is <u>not</u> strongly amplified from this "vacuum field assumption" ($T_{NTV} \sim \delta B^2$)

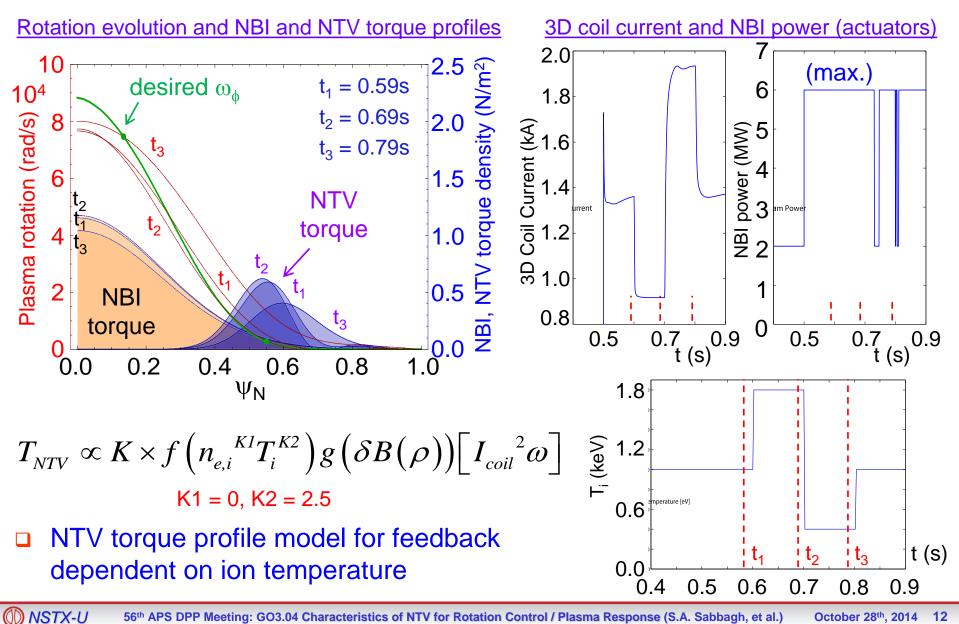
Plasma response from fully-penetrated 3D field used in NTV experimental analysis matches M3D-C¹ single fluid model

 $\frac{Surface-averaged \ \delta B \ from \ fully \ penetrated}{model \ vs. \ M3D-C^1 \ single \ fluid \ model}$

- NTV experimental data is a strong quantitative constraint on plasma response of δB
 T_{NTV} ∝ δB²,
- Good agreement between NTVTOK / M3D-C¹ single fluid models in strong NTV region
 - M3D-C¹ core <δB> larger than NTVTOK
 - Core mode in M3D-C¹
 - □ M3D-C¹ edge $<\delta$ B> smaller
 - Experimental T_{NTV} too small in this region to constraint δB


Non-resonant NTV and NBI used as actuators in state-space rotation feedback controller designed for NSTX-U

• Momentum force balance – ω_{ϕ} decomposed into Bessel function states


$$\sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right) \quad \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$$

□ NTV torque:

$$T_{NTV} \propto K \times f\left(n_{e,i}^{K1}T_{e,i}^{K2}\right)g\left(\delta B(\rho)\right)\left[I_{coil}^{2}\omega\right]$$
 (non-linear)

When T_i is included in NTV rotation controller model, 3D field current and NBI power can compensate for T_i variations

Physical characteristics of NTV are investigated in tokamaks for rotation control and the evaluation of plasma response

NTV characteristics / comparison to theory

- Non-resonant NTV torque is radially extended, relatively smooth profile
- □ KSTAR shows $T_{NTV} \propto (\delta B_{3D})^2$; $T_{NTV} \propto T_i^{2.27}$; no hysteresis on the rotation profile (key for control), confirms NSTX
- Measured T_{NTV} profile in NSTX quantitatively compares well between experiment and Shaing's "connected NTV theory"

K.C. Shaing, et al., NF **50** (2010) 025022)

Plasma response


- Non-resonant T_{NTV} profile in NSTX quantitatively consistent with "fullypenetrated field" assumption without amplification
- Flux surface-averaged 3D field profile from M3D-C¹ single fluid model consistent with field used for quantitative NTV agreement in experiment

Rotation control

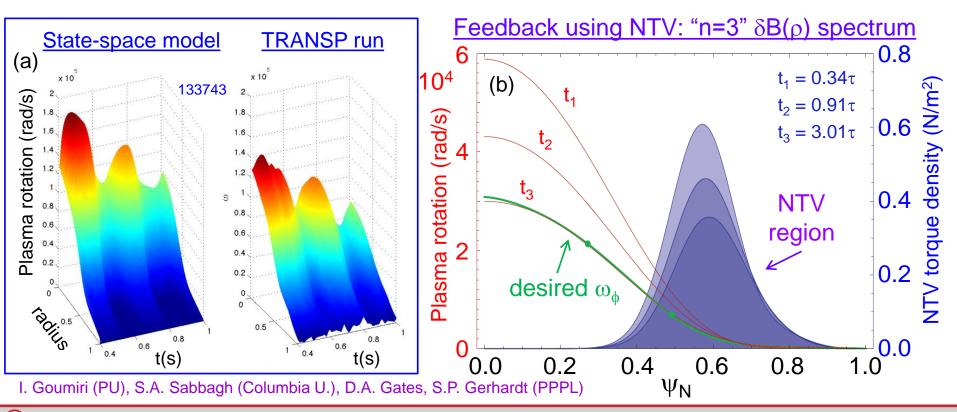
Model-based, rotation controller using NTV and NBI designed/tested for NSTX-U

Backup slides

Very recently, high beta plasmas transiently reached $\beta_N = 4$ in 2014 campaign

Y.S Park, et al., IAEA FEC 2014 paper EX/P8-05 (Fri. PM) S.W. Yoon, et al., IAEA FEC 2014 paper OV/3-4 (Tues. AM)

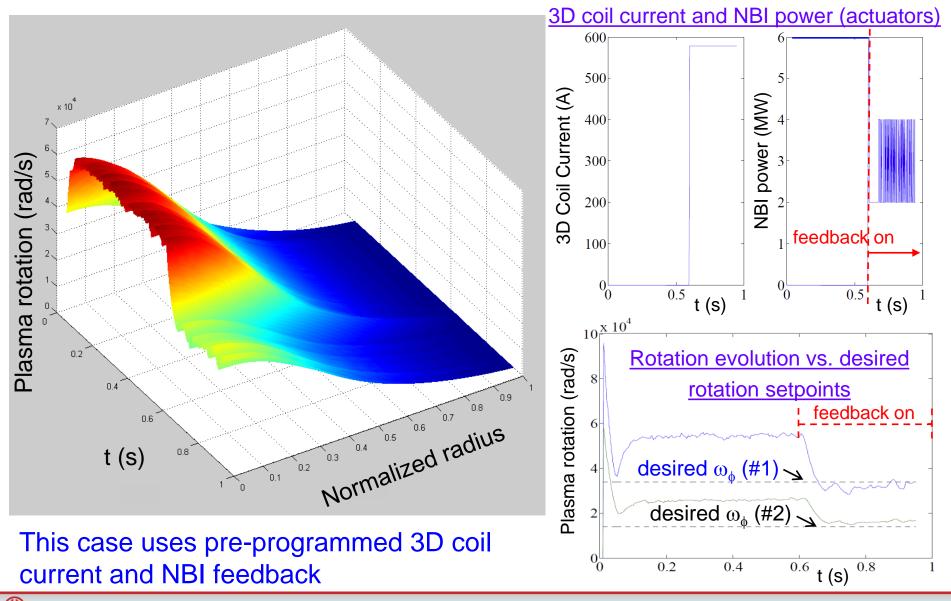
- Values obtained using fully converged KSTAR EFIT reconstructions
- High values reached transiently at lowered B_t
 - □ B_T in range 0.9 1.2 T
 - β_N up to 4 with l_i ~ 0.8 for duration longer than τ_E
 ~60 ms in these discharges
 - $\begin{tabular}{ll} \hline $\beta_N/l_i=5$ is \sim 40\%$ over the computed $n=1$ ideal MHD no-wall limit \end{tabular}$
- Adding newly available 3rd neutral beam source may further increase the operating performance in the ongoing device campaign



Non-resonant Neoclassical Toroidal Viscosity (NTV) physics will be used for the first time in rotation feedback control

 $\Box \quad \text{Momentum force balance} - \omega_{\phi} \text{ decomposed into Bessel function states} \\ \sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$

NTV torque:


$$T_{NTV} \propto K \times f\left(n_{e,i}^{KI} T_{e,i}^{K2}\right) g\left(\delta B(\rho)\right) \left[I_{coil}^{2} \omega\right] \quad (\text{non-linear})$$

(I) NSTX-U 56th APS DPP Meeting: GO3.04 Characteristics of NTV for Rotation Control / Plasma Response (S.A. Sabbagh, et al.) October 28th, 2014

16

Plasma rotation control has been demonstrated for the first time with TRANSP using NBI and NTV actuators

(I) NSTX-U 56th APS DPP Meeting: GO3.04 Characteristics of NTV for Rotation Control / Plasma Response (S.A. Sabbagh, et al.)

Several ordered publications by K.C. Shaing, et al. led to the "Combined" NTV Formulation

Publications (chronological order) Topic K.C. Shaing, S.P. Hirschman, and J.D. Callen, Phys. Fluids 29 (1986) 521. 1) Plateau transport \succ 2) K.C. Shaing, Phys. Rev. Lett., 87 (2001) 245003. Island NTV \succ 3) K.C. Shaing, Phys. Plasmas 10 (2003) 1443. Collisional, 1/v regimes \succ K.C. Shaing, Phys. Plasmas 13 (2006) 052505. 4) Banana, 1/v regimes >K.C. Shaing, S. A. Sabbagh, and M. Peng, Phys. Plasmas 14 (2007) 024501. > 5) Multiple trapping K.C. Shaing, S. A. Sabbagh, M.S. Chu, et al., Phys. Plasmas 15 (2008) 082505 **Orbit squeezing** 6) K.C. Shaing, P. Cahyna, M. Becoulet, et al., Phys. Plasmas 15 (2008) 082506. > Coll. b'dary layer, $v^{0.5}$ 7) K.C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF 51 (2009) 035004. 8) Low v regimes \triangleright Superbanana plateau K.C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF 51 (2009) 035009. 9) \geq K.C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF **51** (2009) 055003. Superbanana regime 10) \geq K.C. Shaing, M. S. Chu, and S. A. Sabbagh, PPCF **51** (2009) 075015. Bounce/transit/drift res. 11) \succ J_{bootstrap} w/resonances K.C. Shaing, M. S. Chu, and S. A. Sabbagh, PPCF **52** (2010) 025005. 12) \geq 13) K.C. Shaing, S. A. Sabbagh, and M. S. Chu, Nucl. Fusion 50 (2010) 025022. Combined NTV formula \geq 14) K.C. Shaing, J. Seol, Y.W. Sun, et al., Nucl. Fusion **50** (2010) 125008. ∇B drift in CBL analysis \geq 15) K.C. Shaing, M. S. Chu, and S. A. Sabbagh, Nucl. Fusion 50 (2010) 125012. Flux/force gen. coords. \geq

- 16) K.C. Shaing, T.H. Tsai, M.S. Chu, et al., Nucl. Fusion **51** (2011) 073043.
- 17) K.C. Shaing, M.S. Chu, C.T. Hsu, et al., PPCF **54** (2012) 124033.

 \geq

 \geq

SBP regime refinement

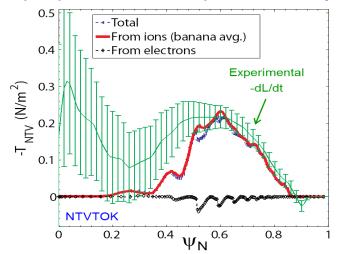
NTV brief overview

GO3.04: Physical Characteristics of Neoclassical Toroidal Viscosity in Tokamaks for Rotation Control and the Evaluation of Plasma Response

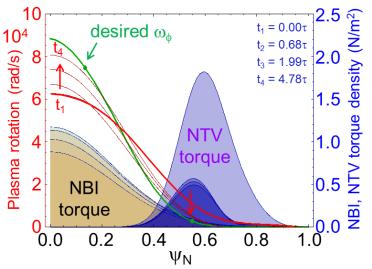
<u>Highlights</u>

Experimental NTV characteristics

- NTV experiments on NSTX and KSTAR
- NTV torque T_{NTV} from applied 3D field is a radially extended, relatively smooth profile
- Perturbation experiments measure T_{NTV} profile


Aspects of NTV for rotation control

- □ Varies as δB^2 ; $T_{NTV} \propto T_i^{5/2}$ in primary collisionality regime for large tokamaks
- No hysteresis on the rotation profile when altered by non-resonant NTV is key for control
- Rotation controller using NTV and NBI tested for NSTX-U; model-based design saves power


NTV analysis to assess plasma response

- Non-resonant NTV quantitatively consistent with fully-penetrated field assumption
- Surface-averaged 3D field profile from M3D-C¹ single fluid model consistent with field used for quantitative NTV agreement in experiment

Perturbation experiments measure NTV torque profile and compare to theory

