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Motivation 

•  A small non-axisymmetric (3D) magnetic perturbation in tokamaks can significantly modify 
plasma performance by altering transport and stability 

•  It is important to control 3D field, for both resonant (RMP) and non-resonant (NRMP) parts 

•  NRMP can induce substantial level of non-ambipolar transport and E×B modification 
–  As well known by neoclassical toroidal viscosity (NTV) and magnetic braking of toroidal rotation 
–  NRNP optimization is critical to control NTV in RMP/EF application, and also rotation control  

•  NTV evaluation requires 3D equilibrium, but NTV creates currents associated with torque 
and can eventually modify 3D equilibrium – need self-consistent formulation 

•  This talk will describe a method of self-consistent NTV calculations and development of 
general perturbed equilibrium code (GPEC), which solves kinetic Euler-Lagrange equation 
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Motivation to improve non-resonant field optimization 
•  Non-resonant field optimization was actively investigated for Non-

axisymmetric control coil (NCC) design in NSTX-U, by adopting 
advanced stellarator optimizers and IPEC-PENT model for NTV  

•  However, this smart optimizer even requires up to 100-1000 code 
runs to approach to a desired solution, and even that solution may 
be not a global optimum 

•  Important questions in optimization (given an NTV model): 
–  What is the maximum or minimum torque, given a power of field? 
–  What are the external fields to generate such an optimal torque? 
–  What are the external fields to maximize a local torque, when the total 

integrated torque is fixed, or under more complicated constraints? 

IPECOPT optimization 
To maximize core n=1 torque (ψ<0.5),  

while minimizing others 
(NSTX-U IP=1.6MA, βN=3.1, q95=8.2)  

Target profile form 

S. Lazerson, PPCF 2015 
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Motivation to improve non-resonant field optimization 
•  Non-resonant field optimization was actively investigated for Non-

axisymmetric control coil (NCC) design in NSTX-U, by adopting 
advanced stellarator optimizers and IPEC-PENT model for NTV  

•  However, this smart optimizer even requires up to 100-1000 code 
runs to approach to a desired solution, and even that solution may 
be not a global optimum 

•  Important questions in optimization (given an NTV model): 
–  What is the maximum or minimum torque, given a power of field? 
–  What are the external fields to generate such an optimal torque? 
–  What are the external fields to maximize a local torque, when the total 

integrated torque is fixed, or under more complicated constraints 

•  GPEC provides a systematic way to answer all of these questions 
by constructing non-Hermitian plasma response matrix including 
torque response 

Target profile form 
Using 

IPECOPT 
(100-1000 runs) 

GPEC optimum 
(A single run) 

GPEC vs. IPECOPT NTV optimization 
(NSTX-U IP=2.0MA, βN=3.4, q95=6.6)  
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Outline 
•  Theory and formulation of 3D force balance with anisotropic pressure tensor 

•  Derivation of modified kinetic Euler-Lagrange (Newcomb) equation 

•  General perturbed equilibrium code (GPEC) and applications to kinetic energy principle 

•  Characteristics of kinetic plasma response and torque 
•  Torque response matrix and optimization of non-resonant fields 

•  Summary and future work  

  
FΞψ

′ + KRΞψ( )′ − KL
†Ξψ

′ +GΞψ( ) = 0

 δWideal < δWKO < δWKinetic < δWCGL

  
τϕ ψ( ) = Φx†Τ ψ( )Φx
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Force balance with tensor pressure  

•  A single-fluid description, with quasi-neutrality for small gyro-radius: 

•  We need to directly solve force balance, since the force operator is not self-adjoint due to the torque  

I.  Parallel force balance:  

II.  Toroidal force balance: 

III.  Radial force balance:   

  


j ⋅

∇ψ P = ∂x

∂ϕ
⋅

∇⋅

P

  

∇⋅

T =

∇⋅

P    

where  

T =

B

B − B2


I / 2  and  


P = ( p|| − p⊥ )b̂b̂+ p⊥


I

   

B ⋅

∇⋅

P = 0

   


∇⊥ p⊥ +

B2

2
⎛
⎝⎜

⎞
⎠⎟
=

κ B2 + p⊥ − p||( )

which implies radial currents associated with toroidal torque 

  
with kinetic approaches:  p|| = ∫ d 3vMv||

2 f    and   p⊥ = ∫ d 3v 1
2

Mv⊥
2 f
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Force balance with tensor pressure  

•  A single-fluid description, with quasi-neutrality for small gyro-radius: 

•  We need to directly solve force balance, since the force operator is not self-adjoint due to the torque  

I.  Parallel force balance:  

II.  Toroidal force balance: 

III.  Radial force balance:   

   
*Neoclassical Toroidal Viscosity: qΓNA

ψ = ∂x
∂ ϕ

⋅

∇⋅

P

  

∇⋅

T =

∇⋅

P    

where  

T =

B

B − B2


I / 2  and  


P = ( p|| − p⊥ )b̂b̂+ p⊥


I

   
*Neoclassical parallel viscosity: 


B ⋅

∇⋅

P

i,e
∑ = 0  

  
with kinetic approaches:  p|| = ∫ d 3vMv||

2 f    and   p⊥ = ∫ d 3v 1
2

Mv⊥
2 f

K. Shaing, PF 1983 

  


j ⋅

∇ψ P = ∂x

∂ϕ
⋅

∇⋅

P

   

B ⋅

∇⋅

P = 0

   


∇⊥ p⊥ +

B2

2
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⎝⎜

⎞
⎠⎟
=

κ B2 + p⊥ − p||( )

which implies radial currents associated with toroidal torque 
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“Perturbed” force balance with tensor pressure 
to include non-axisymmetric magnetic perturbation 

•  Perturbed force balance with  

•  “Lagrangian” correction is required in Eulerian Formulation:  

•  Perturbed tensor pressure equilibrium on Eulerian frame:  

   f = f0 +δ f   on  Unperturbed magnetic coordinates  x = ψ 0 ,θ0 ,ϕ0( )

   
δ fL = f0

x +

ξ( ) +δ f x +


ξ( )− f0( x) ~  δ f ( x)+


ξ ⋅

∇f0( x)

   
δ

j ×

B +

j ×δ


B +

∇⋅

ξ ⋅

∇

P( ) = ∇⋅ δ p⊥


I + (δ p|| −δ p⊥ )b̂b̂( ) + ∇⋅

δ

B⊥b̂+ b̂δ


B⊥

B
p|| − p⊥( ) + δ B||

∂
∂B

+δΦ ∂
∂Φ

⎡

⎣
⎢

⎤

⎦
⎥ p|| − p⊥( )⎛

⎝
⎜

⎞

⎠
⎟

   δ BL ~ δ B( x)+

ξ ⋅

∇B0( x)
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“Perturbed” force balance with tensor pressure 
to include non-axisymmetric magnetic perturbation 

•  Perturbed force balance with  

•  “Lagrangian” correction is required in Eulerian Formulation:  

•  Perturbed tensor pressure equilibrium on Eulerian frame, from Maxwellian:  

   
δ

j ×

B +

j ×δ


B +

∇⋅

ξ ⋅

∇

P( ) = ∇⋅ δ p⊥


I + (δ p|| −δ p⊥ )b̂b̂( ) + ∇⋅

δ

B⊥b̂+ b̂δ


B⊥

B
p|| − p⊥( ) + δ B||

∂
∂B

+δΦ ∂
∂Φ

⎡

⎣
⎢

⎤

⎦
⎥ p|| − p⊥( )⎛

⎝
⎜

⎞

⎠
⎟

f0 = fM   then  

j ×

B =

∇p,   and 

   
δ

Π ≡ δ p⊥


I + (δ p|| −δ p⊥ )b̂b̂  where   δ p|| = ∫ d 3vMv||

2δ fL   and  δ p⊥ = ∫ d 3v 1
2

Mv⊥
2δ fL

   f = f0 +δ f   on  Unperturbed magnetic coordinates  x = ψ 0 ,θ0 ,ϕ0( )

   
δ fL = f0

x +

ξ( ) +δ f x +


ξ( )− f0( x) ~  δ f ( x)+


ξ ⋅

∇f0( x)

   δ BL ~ δ B( x)+

ξ ⋅

∇B0( x)
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I.  Parallel force balance – Automatically satisfied by orbit averaging  

II.  Toroidal force balance – First-order radial currents associated with toroidal torque 

III.  Radial force balance – First-order pressure-tension force balance  

   

∂
∂ψ

δ p⊥ −

ξ ⋅

∇p +


B ⋅δ

B( ) = B2δκψ + 2


B ⋅δ

B − (δ p|| −δ p ⊥ )( )κψ + (b̂ ⋅


∇) δ p⊥ +


B ⋅δ

B( ) b̂ψ

   
χ 'δ

jψ = ∂x

∂ϕ
⋅ −

j ×δ


B −

∇

ξ ⋅

∇p( ) + ∇⋅δ


Π( )

Parallel, toroidal, radial force balance  
with non-axisymmetric magnetic perturbation 

   
b̂ ⋅

∇⋅δ

Π = 0,  which holds for orbit-averaged δ fb =

dl
v||

δ f∫ dl
v||
∫

   
*Note first-order 

∂x
∂ϕ

⋅

∇⋅δ

Π = 0,  but second-order 

∂x
∂ ϕ

⋅

∇⋅δ

Π , on perturbed ( ψ , θ , ϕ )
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II.  Toroidal force balance – First-order radial currents and toroidal torque 

III.  Radial force balance – First-order pressure-tension force balance  

   

∂
∂ψ

δ p⊥ −

ξ ⋅

∇p +


B ⋅δ

B( ) = B2δκψ + 2


B ⋅δ

B − (δ p|| −δ p ⊥ )( )κψ + (b̂ ⋅


∇) δ p⊥ +


B ⋅δ

B( ) b̂ψ

Parallel, toroidal, radial force balance  
with non-axisymmetric magnetic perturbation 

   
χ 'δ

jψ = ∂x

∂ϕ
⋅ −

j ×δ


B −

∇

ξ ⋅

∇p( ) + ∇⋅δ


Π( )

   
*Note first-order 

∂x
∂ϕ

⋅

∇⋅δ

Π = 0,  but second-order 

∂x
∂ ϕ

⋅

∇⋅δ

Π , on perturbed ( ψ , θ , ϕ )

   
These two equations, with δ


j =

∇×δ


B and δ


B =

∇×


ξ ×

B( ),  determines

   

ξ ⋅

∇ψ   and  


ξ ⋅

∇α   (where α ≡ qθ −ϕ )
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•  Fourier representation of displacement and orbit-averaged perturbed distribution function: 

•  Perturbed distribution function for collisionless plasma, and collisional plasmas with Krook operator: 

 

Formulation with orbit-averaged distribution function  
and bounce-Harmonic Fourier representation 

   ξ ψ ,θ ,ϕ( ) = Ξmn ψ( )ei(mθ−nϕ )∑   and   δ fLb ψ ,ϕ , E,µ( ) = δ f±1n ψ , E,µ( )einα−i(−σ nq)h(σ ,θ )∑

   
δ f±1n =

nω b / e
−σ nq( )ω  − n ω E +ω B( ) + iνeff

∂ fM

∂ψ p

δ J±1n ≡ Rnδ J±1n ,  where δ J  is action variation
N. Logan, POP 2013 

F. Porcelli, POP 1994 
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•  Fourier representation of displacement and orbit-averaged perturbed distribution function: 

•  Perturbed distribution function for collisionless plasma, and collisional plasmas with Krook operator: 

 
•  Connections to well-known kinetic energy principles in collisionless limit: 

Formulation with orbit-averaged distribution function  
and bounce-Harmonic Fourier representation 

I.    Kruskal-Oberman for Maxwellian (MHD scale):  
 
II.   Chew-Goldberger-Low for Maxwellian (MHD scale):  
 
III.  Antonson-Lee for Maxwellian (Drift MHD scale):   

   
Rn = −

ω b

T
fM  (Only  = 0)

   
Rn = lim

ν→0
Rn

   
Rn = −

ω b

T
fM  (All )

   ξ ψ ,θ ,ϕ( ) = Ξmn ψ( )ei(mθ−nϕ )∑   and   δ fLb ψ ,ϕ , E,µ( ) = δ f±1n ψ , E,µ( )einα−i(−σ nq)h(σ ,θ )∑

   
δ f±1n =

nω b / e
−σ nq( )ω  − n ω E +ω B( ) + iνeff

∂ fM

∂ψ p

δ J±1n ≡ Rnδ J±1n ,  where δ J  is action variation
N. Logan, POP 2013 

F. Porcelli, POP 1994 
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•  Combing all the components, equations for              poloidal modes: 

•  Leading to modified kinetic Euler-Lagrange equation: 

Modified kinetic Euler-Lagrange equation  

  
AΞα + BRΞψ

′ +CRΞψ = 0    where ′ ≡ ∂
∂ψ

  
DΞψ

′ + ERΞψ + BL
†Ξα( )′ − EL

†Ξψ
′ + HΞψ +CL

†Ξα( ) = 0

Toroidal balance: 
 
Radial balance: 

  
FΞψ

′ + KRΞψ( )′ − KL
†Ξψ

′ +GΞψ( ) = 0

  

A ≡ AI + dE dµ W A†RW A( )∫
BR ≡ BI + dE dµ W A†RW B( )∫
BL ≡ BI + dE dµ W A†R*W B( )∫
CR ≡ CI + dE dµ W A†RW C( )∫
CL ≡ CI + dE dµ W A†R*W C( )∫
D ≡ DI + dE dµ W B†RW B( )∫
ER ≡ EI + dE dµ W B†RW C( )∫
EL ≡ EI + dE dµ W B†R*W C( )∫
H ≡ HI + dE dµ W C †RW C( )∫
F ≡ D − BL

† A−1BR

KR ≡ ER − BL
† A−1CR

KL ≡ EL − BR
† A−1CL

G ≡ H −CL
† A−1CR

δ J =W AΞα +W BΞψ
′ +W CΞψ

 *Ξ :  Poloidal mode vector for ξ
 
Ξψ ,Ξα( )
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•  Combing all the components, equations for              poloidal modes: 

•  Leading to modified kinetic Euler-Lagrange equation: 

•  Ideal (and collisionless) Euler-Lagrange (DCON) equation: 

•  Ideal matrices and Euler-Lagrange equation were shown to be identical 
to DCON matrices and equation, showing directly: 
       Ideal perturbed equilibrium = Minimum state of potential energy 

Modified kinetic Euler-Lagrange equation  

 *Ξ :  Poloidal mode vector for ξ

A. Glasser, APS 1997 
  

FIΞψ
′ + KIΞψ( )′ − KI

†Ξψ
′ +GIΞψ( ) = 0

  *FI ,GI   becomes Hermitian, and KR = KL = KI

  

A ≡ AI + dE dµ W A†RW A( )∫
BR ≡ BI + dE dµ W A†RW B( )∫
BL ≡ BI + dE dµ W A†R*W B( )∫
CR ≡ CI + dE dµ W A†RW C( )∫
CL ≡ CI + dE dµ W A†R*W C( )∫
D ≡ DI + dE dµ W B†RW B( )∫
ER ≡ EI + dE dµ W B†RW C( )∫
EL ≡ EI + dE dµ W B†R*W C( )∫
H ≡ HI + dE dµ W C †RW C( )∫
F ≡ D − BL

† A−1BR

KR ≡ ER − BL
† A−1CR

KL ≡ EL − BR
† A−1CL

G ≡ H −CL
† A−1CR

δ J =W AΞα +W BΞψ
′ +W CΞψ

  
FΞψ

′ + KRΞψ( )′ − KL
†Ξψ

′ +GΞψ( ) = 0

  
AΞα + BRΞψ

′ +CRΞψ = 0    where ′ ≡ ∂
∂ψ

  
DΞψ

′ + ERΞψ + BL
†Ξα( )′ − EL

†Ξψ
′ + HΞψ +CL

†Ξα( ) = 0

Toroidal balance: 
 
Radial balance: 

 
Ξψ ,Ξα( )
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•  Combing all the components, equations for              poloidal modes: 

•  Leading to modified kinetic Euler-Lagrange equation: 

•  Ideal (and collisionless) Euler-Lagrange (DCON) equation: 

•  Cylindrical Euler-Lagrange (Newcomb) equation: 

Modified kinetic Euler-Lagrange equation  

 *Ξ :  Poloidal mode vector for ξ

  f ′ξ( )′ − gξ = 0
  

A ≡ AI + dE dµ W A†RW A( )∫
BR ≡ BI + dE dµ W A†RW B( )∫
BL ≡ BI + dE dµ W A†R*W B( )∫
CR ≡ CI + dE dµ W A†RW C( )∫
CL ≡ CI + dE dµ W A†R*W C( )∫
D ≡ DI + dE dµ W B†RW B( )∫
ER ≡ EI + dE dµ W B†RW C( )∫
EL ≡ EI + dE dµ W B†R*W C( )∫
H ≡ HI + dE dµ W C †RW C( )∫
F ≡ D − BL

† A−1BR

KR ≡ ER − BL
† A−1CR

KL ≡ EL − BR
† A−1CL

G ≡ H −CL
† A−1CR

δ J =W AΞα +W BΞψ
′ +W CΞψ

  
FΞψ

′ + KRΞψ( )′ − KL
†Ξψ

′ +GΞψ( ) = 0

  
AΞα + BRΞψ

′ +CRΞψ = 0    where ′ ≡ ∂
∂ψ

  
DΞψ

′ + ERΞψ + BL
†Ξα( )′ − EL

†Ξψ
′ + HΞψ +CL

†Ξα( ) = 0

Toroidal balance: 
 
Radial balance: 

A. Glasser, APS 1997 
  

FIΞψ
′ + KIΞψ( )′ − KI

†Ξψ
′ +GIΞψ( ) = 0

  *FI ,GI   becomes Hermitian, and KR = KL = KI

 
Ξψ ,Ξα( )
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•  Energy integration with tensor force operator (in complex representation with             ): 

•  Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which 
is precisely what is known as neoclassical toroidal viscosity (NTV) torque 

•  Using                                   and integrating by parts:  

Energy and (NTV) torque consistent with derived tensor 
pressure equilibrium with non-axisymmetric perturbation 

   

2δW + i
τϕ

n
= −


ξ ⋅ δ


j ×

B +

j ×δ


B +

∇

ξ ⋅

∇p( )− ∇⋅ δ p⊥


I + (δ p|| −δ p⊥ )b̂b̂( )( )dx3∫

= dψ∫ Ξα
† AΞα +Ξα

† BR ′Ξψ +Ξα
† CRΞψ + ′Ξψ

†BL
†Ξα +Ξψ

† CL
†Ξα + ′Ξψ

†D ′Ξψ + ′Ξψ
†ERΞψ +Ξψ

† EL
† ′Ξψ +Ξψ

† HΞψ( )

  exp(inϕ )

AΞα +BRΞψ
" +CRΞψ = 0

  
dψ∫ Ξψ

† F ′Ξψ + KRΞψ( )⎡
⎣

⎤
⎦
′
− dψ∫ Ξψ

† F ′Ξψ + KRΞψ( )′ − KL
† ′Ξψ +GΞψ( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

* = 0 in equilibrium, by modified Euler-Lagrange equation  

J.-K. Park, POP 2011 

  
2δW + i

τϕ

n
=
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•  Energy integration with tensor force operator (in complex representation with             ): 

•  Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which 
is precisely what is known as neoclassical toroidal viscosity (NTV) torque 

•  Using                                   and integrating by parts:  

Energy and (NTV) torque consistent with derived tensor 
pressure equilibrium with non-axisymmetric perturbation 

exp(inϕ )

AΞα +BRΞψ
" +CRΞψ = 0

J.-K. Park, POP 2011 

  
Ξψ

† F ′Ξψ + KRΞψ( )⎡
⎣

⎤
⎦ * Only surface term remains 

   

2δW + i
τϕ

n
= −


ξ ⋅ δ


j ×

B +

j ×δ


B +

∇

ξ ⋅

∇p( )− ∇⋅ δ p⊥


I + (δ p|| −δ p⊥ )b̂b̂( )( )dx3∫

= dψ∫ Ξα
† AΞα +Ξα

† BR ′Ξψ +Ξα
† CRΞψ + ′Ξψ

†BL
†Ξα +Ξψ

† CL
†Ξα + ′Ξψ

†D ′Ξψ + ′Ξψ
†ERΞψ +Ξψ

† EL
† ′Ξψ +Ξψ

† HΞψ( )

  
2δW + i

τϕ

n
=
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•  Energy integration with tensor force operator (in complex representation with             ): 

•  Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which 
is precisely what is known as neoclassical toroidal viscosity (NTV) torque 

•  Using                                   and integrating by parts:  

•  Energy, torque, and 3D force balance are all self-consistently calculated with perturbed tensor pressure, 
yielding non-Hermitian plasma response matrix including torque response 

Energy and (NTV) torque consistent with derived tensor 
pressure equilibrium with non-axisymmetric perturbation 

exp(inϕ )

AΞα +BRΞψ
" +CRΞψ = 0

J.-K. Park, POP 2011 

  
Ξψ

† F ′Ξψ + KRΞψ( )⎡
⎣

⎤
⎦

  
Non-Hermitian Plasma Response Matrix: WP ≡ F ′Ξψ + KRΞψ( )Ξψ

−1

  
= Ξψ

† WPΞψ

   

2δW + i
τϕ

n
= −


ξ ⋅ δ


j ×

B +

j ×δ


B +

∇

ξ ⋅

∇p( )− ∇⋅ δ p⊥


I + (δ p|| −δ p⊥ )b̂b̂( )( )dx3∫

= dψ∫ Ξα
† AΞα +Ξα

† BR ′Ξψ +Ξα
† CRΞψ + ′Ξψ

†BL
†Ξα +Ξψ

† CL
†Ξα + ′Ξψ

†D ′Ξψ + ′Ξψ
†ERΞψ +Ξψ

† EL
† ′Ξψ +Ξψ

† HΞψ( )

  
2δW + i

τϕ

n
=
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•  GPEC integrates modified kinetic Euler-Lagrange equation 
through modified DCON stability code 

•  Kinetic matrices are calculated presently by PENT, but can 
be flexibly extended and combined with any kinetic solver 
for drift-kinetic equation 

•  Integration from core to edge with M linearly independent 
solutions leads to non-Hermitian plasma response matrix 

•  Anti-Hermitian part of plasma response matrix provides all 
the information of torque and its profile 

•  It is shown that the field penetration can be strongly 
modified by kinetic energy and toroidal torque, throughout 
plasma including the neighborhood of rational surfaces 

General perturbed equilibrium code (GPEC) has been 
successfully developed based on modified DCON and IPEC 

N. Logan, POP 2013 

Eigenfunction for n=3 least δW mode 
(DIII-D βN=2.5, q95=3.7) 

ΨN 

ξm 

m/n=4/3 m/n=5/3 
… 

IPEC 
GPEC with precession 
GPEC with precession+bounce 
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•  Ideal Euler-Lagrange equation has regular singular points at q=m/n surface 

•  Exclusion of large resonant solution in DCON means: 
–  No magnetic islands and flux surfaces are nested everywhere 
–  Most of complete NTV models rely on this nested flux surface condition 
–  However, NTV across the singular surface is still non-integrable 

•  Modified kinetic Euler-Lagrange equation is not singular as long as the 
toroidal torque is finite 

•  Meaning that NTV torque can be integrated across nested flux surfaces, but 
without adhoc dissipation model near the rational surfaces  

Modification of field penetration in the neighborhood of 
singular surfaces is important for self-consistent NTV 

  
FIΞψ

′ + KIΞψ( )′ − KI
†Ξψ

′ +GIΞψ( ) = 0

  FI = QFIQ ,  KI = QKI    where  Qmm ' = (m− nq)δmm '

  
FΞψ

′ + KRΞψ( )′ − KL
†Ξψ

′ +GΞψ( ) = 0

  F = QFKQ − PL
†Q −QPR + R1,  KR = QKKR + R2 ,  KL = KKLQ + R3  

Torque density by non-resonant NCC n=1 
(NSTX-U IP=2MA, Low βN=1.9) 

Non-integrable peaks 
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•  Present GPEC with Krook collisional operator 
should give identical solutions to MARS-K without 
fluid rotation, in zero-frequency limit 

•  Successful benchmark was made, and both codes 
captured important changes in eigenfunctions 

•  Two codes use distinct methods in the computation, 
leading to different flexibility and advantages 

•  GPEC is a perturbed equilibrium code working for 
the zero-frequency limit, but can adopt any δf-solver 
and give the full eigenmode structure by a single run, 
which can be used to optimize non-resonant field 

Verification of GPEC solution  
against MARS-K in zero-frequency limit 

(A circular plasma, A=2.8, βN =3.3) 

Ideal solution  Kinetic solution  

GPEC 
MARS-K  

Imaginary part 
due to toroidal phase shift 
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•  Kruskal-Oberman, Rosenbluth-Rostocker, and Newcomb 
used kinetic closure for anisotropic pressure and derived 
kinetic energy principle in MHD scale 

•  KO limit is equivalent to take:    

 
•  CGL limit is equivalent to the upper bound of Schwartz 

inequality of K-O limit, and also is equivalent to take: 

•  As expected, NSTX-U target studies yielded: 

Kinetic energy principle by  
Kruskal-Oberman, CGL, and Antonson-Lee 

Least δW normalized to vacuum energy 
(NSTX-U IP=2MA, q95=6.6) 

 δWideal < δWKO < δWKinetic < δWCGL

*Where δWKinetic is calculated by ignoring toroidal torque (Antonson-Lee), but  
the stability of the system should be determined by solving normal mode problems with the wall  

Kinetic stabilization M. Kruskal, PF 1958 

Chew, PRS 1956 

T. Antoson, PF 1982 

J. Berkery, POP 2014 

   
Rn = −

ω b

T
fM  (Only  = 0)

   
Rn = −

ω b

T
fM  (All )



24 57th APS-DPP, J.-K. Park, Nov. 2015 

•  MARS-K simulation already showed plasma response field (called RFA, resonant field amplification) can 
be increased almost linearly across the no-wall limit 

•  GPEC also reproduces the trend, as well as phase-shift due to the torque 

•  Furthermore, GPEC predicts that the plasma response can be eventually peaked and decreased if it 
crosses δWkinetic=0 limit, but the peak is limited by the finite torque 

Resonant field amplification across no-wall β limit 

Recaptured DIII-D n=1 RFA 
NSTX-U RFA prediction (IP=2MA n=1) 

Roll over at βdWk=0 

Z. Wang, PRL 2015 
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•  Torque creates toroidal phase-shift in plasma response 

 
•  Toroidal phase shift increases along with torque, and 

eventually coupling between external field and plasma can 
become inefficient, resulting in self-shielding process 

Toroidal phase shift in plasma response and self-shielding 

Ideal Response Kinetic Response 

NTV vs. E×B 

Self-consistent NTV
 

A. Boozer, PRL 2001 

(*ωE0 From TRANSP with 12MW NBI) 

(NSTX-U IP=2MA, βN =3.0, n=1) 
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•  Given displacement, torque is determined by imaginary part of plasma response matrix: 

•  GPEC solution matrix relates  
 

•  Virtual casing principle relates (total) field to external (vacuum) field on the boundary by: 

Construction of torque response matrix to external field 

  
Integrated torque  τϕ ψ( ) = Ξψ

† [n ImWP]Ξψ

  
displacement  Ξψ (ψ )  to field Φ(ψ =ψ b ) on the boundary   

  
Leading to τϕ ψ( ) = nΦ† ΛT (ψ )( )−1

Φ,   where ΛT ψ( )  is imaginary part of inductance matrix

  Φ = ΛL−1Φx ≡ PΦx ,  where L is surface inductance and P is permeability matrix
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•  Given displacement, torque is determined by imaginary part of plasma response matrix: 

•  GPEC solution matrix relates  
 

•  Virtual casing principle relates (total) field to external (vacuum) field on the boundary by: 

•  So one can obtain the integrated NTV torque up to any radial point, once external field is known, by 

Construction of torque response matrix to external field 

  
Integrated torque  τϕ ψ( ) = Ξψ

† [n ImWP]Ξψ

  
displacement  Ξψ (ψ )  to field Φ(ψ =ψ b ) on the boundary   

  
Leading to τϕ ψ( ) = nΦ† ΛT (ψ )( )−1

Φ,   where ΛT ψ( )  is imaginary part of inductance matrix

  
τϕ ψ( ) = nΦx†P† ΛT ψ( )( )−1

PΦx ≡ Φx†Τ ψ( )Φx

  Τ(ψ ) ≡ nP† ΛT (ψ )( )−1
P  is Hermitian, although P (i.e. plasma response) is non-Hermitian

  Φ = ΛL−1Φx ≡ PΦx ,  where L is surface inductance and P is permeability matrix
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•  Theoretical maximum (minimum) integrated torque, when power of external field is fixed, is given by the 
largest (smallest) eigenvalue λ of the torque response matrix 

•  Also, one can obtain the maximum (or minimum) torque possible for any arbitrary interval (ψ1, ψ2), given 
the total integrated torque fixed: 

•  In general, quadratic matrix optimizer can answer more complicated demands in NTV and non-resonant 
field optimization (e.g. when negative torque can exist, and when external field is limited by coils) 

Theoretically maximum (or minimum) integrated torque  
and external field required to produce them 

 
 τϕ ,max ψ( ) = λmax  for  Τ(ψ )

  
Question : Maximize (or minimize)  Rmax =

τϕ ψ 2( )−τϕ ψ 1( )
τϕ (ψ b )

=
Φx† Τ(Δψ 12 )⎡⎣ ⎤⎦Φ

x

Φx† Τ(ψ b )⎡⎣ ⎤⎦Φ
x

  Answer : Rmax = λmax  for  Τ−1(ψ b )Τ(ψ 12 )  and  its eigenvector  gives required external field 
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•  Maximum torque ratio at a given ψ to the total integrated torque is given by: 

•  Eigenvector shows the importance of low and “negative m” mode (i.e. backward helicity mode), to 
increase the torque only in the core by deeper penetration 

Theoretically maximum torque inside a given flux surface 
relative to the total integrated torque 

  Rmax = λmax  for  Τ−1(ψ b )Τ(ψ )

External field maximizing the torque 

Negative m modes 

J.-K. Park, PRL 2013 for KSTAR experiments 

(*Rotation from TRANSP  
with 12MW NBI) 

(NSTX-U IP=2MA, βN =3.4, n=1) 

Maximum torque % inside a given flux surface 
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•  Maximum torque for interval (ψ1,ψ2) to the total integrated torque is given by: 

•  Eigenvector shows delicate compensations between negative m modes and dominant positive m modes 

Optimization of local torque to the total integrated torque 

External field optimizing the local torque: 

(NSTX-U IP=2MA, βN =3.4, n=1) 

  Rmax = λmax  for  Τ−1(ψ b )Τ(Δψ )

Optimized torque profile for given interval: 
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•  3D force balance with tensor pressure for Maxwellian equilibrium has been solved directly, leading to 
modified kinetic Euler-Lagrange equation 

•  General perturbed equilibrium code (GPEC) has been successfully developed to numerically integrate the 
new Euler-Lagrange equation, giving 3D equilibrium consistent with NTV torque 

•  GPEC shows various stability limits of kinetic energy principle, and reproduces RFA trends 

•  Self-consistent NTV can be calculated by non-Hermitian plasma response matrix including NTV torque 

•  Torque response matrix provides a new and systematic way of NTV and non-resonant field optimization, 
revealing the importance of backward helicity modes for local torque optimization 

•  GPEC provides all the information of self-consistent NTV torque in a matrix function form, which can be 
coupled to external coils and matrix optimizers to optimize local torque under various constraints 

Summary and Future work 


