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Motivation

A small non-axisymmetric (3D) magnetic perturbation in tokamaks can significantly modify
plasma performance by altering transport and stability

« It 1s important to control 3D field, for both resonant (RMP) and non-resonant (NRMP) parts

* NRMP can induce substantial level of non-ambipolar transport and £ xB modification
— As well known by neoclassical toroidal viscosity (NTV) and magnetic braking of toroidal rotation
— NRNP optimization is critical to control NTV in RMP/EF application, and also rotation control

* NTV evaluation requires 3D equilibrium, but NTV creates currents associated with torque
and can eventually modify 3D equilibrium — need self-consistent formulation

 This talk will describe a method of self-consistent NTV calculations and development of
general perturbed equilibrium code (GPEC), which solves kinetic Euler-Lagrange equation
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Motivation to improve non-resonant field optimization

* Non-resonant field optimization was actively investigated for Non-
axisymmetric control coil (NCC) design in NSTX-U, by adopting
advanced stellarator optimizers and IPEC-PENT model for NTV

» However, this smart optimizer even requires up to 100-1000 code

runs to approach to a desired solution, and even that solution may
be not a global optimum

» Important questions in optimization (given an NTV model):
— What is the maximum or minimum torque, given a power of field?
— What are the external fields to generate such an optimal torque?

— What are the external fields to maximize a local torque, when the total
integrated torque is fixed, or under more complicated constraints?

IPECOPT optimization
To maximize core n=1 torque (y<0.5),

while minimizing others

S. Lazerson, PPCF 2015
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Motivation to improve non-resonant field optimization

* Non-resonant field optimization was actively investigated for Non-
axisymmetric control coil (NCC) design in NSTX-U, by adopting
advanced stellarator optimizers and IPEC-PENT model for NTV

» However, this smart optimizer even requires up to 100-1000 code

runs to approach to a desired solution, and even that solution may
be not a global optimum

» Important questions in optimization (given an NTV model):
— What is the maximum or minimum torque, given a power of field?
— What are the external fields to generate such an optimal torque?

— What are the external fields to maximize a local torque, when the total
integrated torque is fixed, or under more complicated constraints

* GPEC provides a systematic way to answer all of these questions

by constructing non-Hermitian plasma response matrix including
torque response

GPEC vs. IPECOPT NTV optimization
(NSTX-U [,=2.0MA, B\=3.4, qys=06.6)
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Outline

Theory and formulation of 3D force balance with anisotropic pressure tensor

Derivation of modified kinetic Euler-Lagrange (Newcomb) equation

’

(FE ‘'YK = ) —(K*T "+ G=E )=0
v Ry v

L~y

General perturbed equilibrium code (GPEC) and applications to kinetic energy principle
ow, . <oW.  <oWw. . <OW,

ideal Kinetic CGL

Characteristics of kinetic plasma response and torque

* Torque response matrix and optimization of non-resonant fields

7 (v)=2"T(y)®

e Summary and future work
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Force balance with tensor pressure

A single-fluid description, with quasi-neutrality for small gyro-radius:
V.T=V.P where T=BB—B*I/2 and ﬁ:(pn—pL)l3l3+pj

oy e 1
with kinetic approaches: p = Jd 3vaH2 f and p = Jd 3v5 Mvi f

* We need to directly solve force balance, since the force operator is not self-adjoint due to the torque

-

I.  Parallel force balance: B-V-P=0

=g X o 5
II. Toroidal force balance: J'VWP=£'V'P

which implies radial currents associated with toroidal torque
B2

III. Radial force balance: V, Lpi +7J = 12'(32 +p, - pH)
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Force balance with tensor pressure

* A single-fluid description, with quasi-neutrality for small gyro-radius:
V.7=V.P where T=BB-BI/2 and }3=(pH—pL)l35+pLj
1
with kinetic approaches: p = Jd 3vaH2 f and p = Jd 3v5 Mvi f

* We need to directly solve force balance, since the force operator is not self-adjoint due to the torque

[.  Parallel force balance: B-V-P=0 *Neoclassical parallel viscosity: 2<B’ V- 13> =0
ie K. Shaing, PF 1983
= a)_é: - = . . . . a)_é -
[I. Toroidal force balance: / Vv, = 0 V.P  *Neoclassical Toroidal Viscosity: gI'} = 5 V.-P
¢ ¢
which implies radial currents associated with toroidal torque
_ B?
: . = 2
III. Radial force balance: VL(pi +7J = K'(B +p, —pH)
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“Perturbed” force balance with tensor pressure
to include non-axisymmetric magnetic perturbation

* Perturbed force balance with
f=/f,+0f on Unperturbed magnetic coordinates X = (l//O,GO,q)O)
* “Lagrangian” correction is required in Eulerian Formulation:

8B, ~8B(X)+& VB (%)
8f,=1,(F+E)+5/(3+&)- £,(F) ~ 8D +E -V, (%)

* Perturbed tensor pressure equilibrium on Eulerian frame:

) (5pLI+(5p” 5pl)bb)+V (%(p—pL)+[5Ba%+&ba%i|(p—pl)J

— — — — —

5] xB+jx8B+V-(&:
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“Perturbed” force balance with tensor pressure
to include non-axisymmetric magnetic perturbation

* Perturbed force balance with

f=/f,+0f on Unperturbed magnetic coordinates X = (l//O,GO,q)O)
e “Lagrangian” correction is required in Eulerian Formulation:

8B, ~8B(X)+& VB (%)

8f,=1,(F+E)+5/(3+&)- £,(F) ~ 8D +E -V, (%)

* Perturbed tensor pressure equilibrium on Eulerian frame, from Maxwellian: f, = f,, then jxB=Vp, and

— —

8jxB+ xX8B+ ?(E V ) §'(5po+(5p”—5pL)l;I;)

5ﬁs§pj+(6pu—5pl)l;l; where 5pH=fd3vMVH25fL and 5PL:Jd3V%MVi5fL
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Parallel, toroidal, radial force balance
with non-axisymmetric magnetic perturbation

[.  Parallel force balance — Automatically satisfied by orbit averaging

b-V -81=0, which holds for orbit-averaged 8 f, = 95%5f / Cﬁ%
I I

II. Toroidal force balance — First-order radial currents associated with toroidal torque

18] =50 (<7 x8B-V(E-Vp) v o)

*Note first-order <g_x V. 51:[> =0, but second-order <
¢

g_fﬁﬂzl>, on perturbed (,0,9)
¢

[II. Radial force balance — First-order pressure-tension force balance
p oL . .\ I
w(5pl oy -Vp+B-5B) = Bk, +(2B-8B—(8p,~8p )k, +(b-V)(8p, + B-5B)b,
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Parallel, toroidal, radial force balance
with non-axisymmetric magnetic perturbation

—> These two equations, with 6 j =V x 8B and 6 B =V x (é X E), determines
E-?y/ and E-?a (where o = g0 — @)
II. Toroidal force balance — First-order radial currents and toroidal torque
STy a)_é - = = = — had
187" _ﬁ'(_] x6B-V/(E ~Vp)+V-5H)

*Note first-order <g_x V- 51:[> =0, but second-order <g—{ V- 5l:[>, on perturbed (7,0, %)
¢ ¢

III. Radial force balance — First-order pressure-tension force balance
p oL . - A
w(5pl oy -Vp+B-5B) = Bk, +(2B-8B—(8p,~8p )k, +(b-V)(8p, + B-5B)b,
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Formulation with orbit-averaged distribution function
and bounce-Harmonic Fourier representation

* Fourier representation of displacement and orbit-averaged perturbed distribution function:
(l// 0 (p) z_mn( )" and Sf,, (ty,(p,E,‘u) =51, (V,’E"u)eina—i(f—cnq)h(c,e) F. Porcelli, POP 1994

 Perturbed distribution function for collisionless plasma, and collisional plasmas with Krook operator:

N. Logan, POP 2013
af,

0J,, =R 6J,,, where 6J is action variation

nw, /e
(E—O'nq) —n(a) + )+zvﬁ W,

5ft1€n =
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Formulation with orbit-averaged distribution function
and bounce-Harmonic Fourier representation

* Fourier representation of displacement and orbit-averaged perturbed distribution function:
§(v.0.0)= 2.5, ()" and 81,,(v.9.Eopt)= 28, (Y Eopt) e oo T IO TOT S
 Perturbed distribution function for collisionless plasma, and collisional plasmas with Krook operator:

N. Logan, POP 2013
nw, / e af, s

Ofr = 0J,, =R 6J,,, where 6J is action variation
= (f—crnq) —n(a) + )+zvﬁ W

+1n?
* Connections to well-known kinetic energy principles in collisionless limit:

[. Kruskal-Oberman for Maxwellian (MHD scale): R, = —% f,, (Only /=0)

In

®
II. Chew-Goldberger-Low for Maxwellian (MHD scale): R, = —?" Sy (AlLL)

(n

III. Antonson-Lee for Maxwellian (Drift MHD scale): R, =limR

v—0 tn
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Modified kinetic Euler-Lagrange equation

« Combing all the components, equations for (EW,EQ) poloidal modes: *E: Poloidal mode vector for &
. _ o _ .0 AEA,+jdEdu(W”’*RW”)

Toroidal balance: 4= +BEZ +C.E =0 where "=— )

* i v oy B,=B,+ [dEdu(Ww " RW")

: . = 7 = = | | pie = = = T p*
Radial balance: (D_w +ERHW+BL.~Q) (EL_.W +H_w+CL_.a)—0 BLEBI+jdEdu WATR WB)

* Leading to modified kinetic Euler-Lagrange equation:

’

(
Co=C,+ [dEdu(W " " RIWC)
, (
(FEW + KREW) —(KZE

C,=C,+ [dEdu(W" R'W")

’

= — — B B
y +G_w) 0 D=D,+ [dEdu(W" RW")
E,=E, +[dEdu(W" RW®)
E, =E,+[dEdu(w" R'W)
Hs=H, +[dEdu(W RW)
F=D-B/A4"'B,
K,=E,-BlA"C,
K,=E,-BlA'C,
G=H-Cl4'C,
§J=W'E +W’E +WE
o v v
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Modified kinetic Euler-Lagrange equation

Combing all the components, equations for (EW,EQ) poloidal modes:
— 0

Toroidal balance: A= +BRE "YCE= =0 where ‘= —
“ v Ry oy

Radial balance: (DE "vEZ +B'= ) —(E*E. "vYHE +C'= ):o
174 Ry L™ o L™y 174 L™«

Leading to modified kinetic Euler-Lagrange equation:

(FE "+ K E ) —(K*E
v R™y

=y

’

+G= ):0
v

Ideal (and collisionless) Euler-Lagrange (DCON) equation:

(FE "y K= ) _([(TE el ):0 A. Glasser, APS 1997
I~y I~y 1"y I~y

*F,G, becomes Hermitian, and K, = K, = K,

Ideal matrices and Euler-Lagrange equation were shown to be identical
to DCON matrices and equation, showing directly:
Ideal perturbed equilibrium = Minimum state of potential energy

*Z: Poloidal mode vector for &
A=A+ [dEdu(w* RW")
B,=B,+ [dEdu(Ww " RW")
B, =B+ [dEdu(W"'R'W")
Co=C,+ [dEdu(W " RWC)
C,=C,+ [dEdu(W" R'W")
D=D,+[dEdu(w" RW")
E,=E, +[dEdu(W" RW®)
E, =E,+[dEdu(w" R'W)
Hs=H, +[dEdu(W RW)
F=D-B/A4"'B,
K,=E,-B'AC,

K, =E,-BA'C,
G=H-Cl4'C,

8J=W'S, +W*’s, +WE,
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Modified kinetic Euler-Lagrange equation

« Combing all the components, equations for (EW,EQ) poloidal modes: *E: Poloidal mode vector for &
. _ o _ .0 AEA,+jdEdu(W”’*RW”)
Toroidal balance: 4= +BEZ +C.E =0 where "=— )
* i v oy B,=B,+ [dEdu(Ww " RW")

: . = 7 = = | | pie = = = T p*
Radial balance: (D_w +ERHW+BL.~Q) (EL_.W +H_w+CL_.a)—0 BLEBI+jdEdu WATR WB)

(
Leading to modified kinetic Euler-Lagrange equation: Co=C, + [dEdu(w " RW)
, C,=C,+ [dEdu(W" R'W")
(FEW’ + KRE!//) - (KZEW’ + GEV’) =0 D=D, +J.dEd‘u(WBTRWB)
E,=E, +[dEdu(W" RW®)

Ideal (and collisionless) Euler-Lagrange (DCON) equation:
( ) g g ( ) q ELEEI_'_J'dEd‘u(WB-;-R*WC)
(FE ,+KE ) —(KTE ,+GE ):O A. Glasser, APS 1997 HEH1+J.dEd,LL(WﬁRWC)
I~y I~y 1"y I~y
F=D-B/A4"'B,
K,=E,-B A'C,
Cylindrical Euler-Lagrange (Newcomb) equation: K,=E,-B'A'C,

, G=H-ClAC,
(/&) -g&=0

*F,G, becomes Hermitian, and K, = K, = K,

— — 4 p—
8J=W'E +W"s +WE
v v
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Energy and (NTV) torque consistent with derived tensor
pressure equilibrium with non-axisymmetric perturbation

* Energy integration with tensor force operator (in complex representation with exp(ing)):
T - o - o - == = - - A
25W+i—<"=—j§ -(5j><B+jxaB+V(§ -Vp)—V'(BpLI+(5p”—5pl)bb))dx3
= J'du/( = A=, +E! BE +E C,E +E'BE +E CE +E'DE| +EEE +5 E/Z + EZ/HEW)

* Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which
1s precisely what is known as neoclassical toroidal viscosity (NTV) torque 7K. Park, POP 2011

* Using AE, +B,E +C,E, =0 and integrating by parts:

2owi%e = a2 (12 0,2, - Jaw| =1 (= 0 2, - (1 062, )

* = ( in equilibrium, by modified Euler-Lagrange equation
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Energy and (NTV) torque consistent with derived tensor
pressure equilibrium with non-axisymmetric perturbation

* Energy integration with tensor force operator (in complex representation with exp(ing)):
T - o - o - == = - - A
260 +i-2 = - [ -(6j x B+ ] ><63+V(§ ~Vp)—V~(5pLI+(5p” —6pL)bb))dx3
= J'du/( TAH +EB,E +E|C,E +E/BE +E C/E +E'DE +EEE +E EE + EZ/HEW)
* Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which

1s precisely what is known as neoclassical toroidal viscosity (NTV) torque 7K. Park, POP 2011

* Using AE, +B,E +C,E, =0 and integrating by parts:

T
20W +i—L = [ET (FE' +K = ):| * Only surface term remains
n v v Ry
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Energy and (NTV) torque consistent with derived tensor
pressure equilibrium with non-axisymmetric perturbation

Energy integration with tensor force operator (in complex representation with exp(ing)):
T - o - o - == = - - A
26W+i—<"=—j§ ~(6j><B+jxéB+V(§ ~Vp)—V'(5plI+(5p”—5pl)bb))dx3
= J'dw( = A=, +E! BE +E C,E +E'BE +E CE +E'DE| +EEE +5 E/Z + EZ/HEW)

Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which
1s precisely what is known as neoclassical toroidal viscosity (NTV) torque 7K. Park, POP 2011

Using AZ, +BE +C,E, =0 and integrating by parts:
26W 4% = [ﬂ (F=' +K 2 )} =='wE
n “y\" Ty Ry Sy Py

Energy, torque, and 3D force balance are all self-consistently calculated with perturbed tensor pressure,
yielding non-Hermitian plasma response matrix including torque response

Non-Hermitian Plasma Response Matrix: W, = (F EI’V +K,.2, )E;
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General perturbed equilibrium code (GPEC) has been
successfully developed based on modified DCON and IPEC

* GPEC integrates modified kinetic Euler-Lagrange equation
through modified DCON stability code

N. Logan, POP 2013

 Kinetic matrices are calculated presently by PENT, but can Eigenfunction for n=3 least W mode
be flexibly extended and combined with any kinetic solver (DHI-D By=2.5, q95=3.7)

for drift-kinetic equation . |

IPEC
GPEC with precession
GPEC with precession+bounce

* Integration from core to edge with M linearly independent
solutions leads to non-Hermitian plasma response matrix : [

0.5

* Anti-Hermitian part of plasma response matrix provides all

the information of torque and its profile

* It is shown that the field penetration can be strongly
modified by kinetic energy and toroidal torque, throughout
plasma including the neighborhood of rational surfaces
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Modification of field penetration in the neighborhood of
singular surfaces is important for self-consistent NTV

* Ideal Euler-Lagrange equation has regular singular points at g=m/n surface
(F]E g K= ) — (K]TE "+ GE ) =0 Torque density by non-resonant NCC n=1
v v v v (NSTX-U I,=2MA, Low By=1.9)

F,=0F0,K, =0K, where O  =(m-nq)s,, . Non-integrable peaks

* Exclusion of large resonant solution in DCON means:
— No magnetic islands and flux surfaces are nested everywhere
— Most of complete NTV models rely on this nested flux surface condition
— However, NTV across the singular surface is still non-integrable

g
=
o

* Modified kinetic Euler-Lagrange equation is not singular as long as the
toroidal torque is finite ,

+—— |deal |
FE'+K 2 | -[K'E "+GE |=0 — Ideal-Reg
v Ry L=y v +~— GPEC

Torque density [N/m?]
2
o

©
o
L

F=QF.Q-P/Q-QP,+R,K,=0K,,+R, K, =K O+R, 0980 02 o4 N 06 08 10

* Meaning that NTV torque can be integrated across nested flux surfaces, but
without adhoc dissipation model near the rational surfaces
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Verification of GPEC solution
against MARS-K in zero-frequency limit

* Present GPEC with Krook collisional operator (A circular plasma, A=2.8, B =3.3)
shquld give 1d§:ntlcal solutions to MARS—K without Ideal solution Kinetic solution
fluid rotation, in zero-frequency limit 100 100

o

* Successful benchmark was made, and both codes
captured important changes in eigenfunctions

& norp1a| (a.u.)
=
o

Rea!
N
[=]
o

» Two codes use distinct methods in the computation, o SE—— 300
leading to different flexibility and advantages o v o
525 Imaginary part ‘ ;* =

» GPEC is a perturbed equilibrium code working for 5% dueoforoidal phase shift E .
the zero-frequency limit, but can adopt any Jf-solver g _| 2.
and give the full eigenmode structure by a single run, ‘s ,| g,
which can be used to optimize non-resonant field E s —y =

" B

0.2 0.4 0.6 0.8 1 0

o
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Kinetic energy principle by
Kruskal-Oberman, CGL, and Antonson-Lee

* Kruskal-Oberman, Rosenbluth-Rostocker, and Newcomb Least W normalized to vacuum energy
used kinetic closure for anisotropic pressure and derived (NSTX-U I;=2MA, q5=6.6)
kinetic energy principle in MHD scale o5——— —

o e . 0.10}
« KO limit is equivalent to take: M. Kruskal, PF 1958 Kinetic stabilization

o, 4
an Z—TfM (OHIYKZO) 0.05¢
* CGL limit is equivalent to the upper bound of Schwartz S| 0000 - - - SIS |
inequality of K-O limit, and also is equivalent to take: =l
o Chew, PRS 1956
Rén = _Tb fM (All 0) J. Berkery, POP 2014 —0.05} .
* As expected, NSTX-U target studies yielded: —o10 T ° E_r“s'tfa"Oberma”
—e Inetic
—e CGL
5VVideal < 6WKO < 5WKinetic < 6WCGL 015 ‘ ‘ ‘ ‘ ‘ ‘ ‘
T. Antoson, PF 1982 "32 33 34 35 36 37 38 39 40
*Where 0Wg;,.... 1s calculated by ignoring toroidal torque (Antonson-Lee), but By

the stability of the system should be determined by solving normal mode problems with the wall

Q@ONSTX-U 57t APS-DPP, J.-K. Park, Nov. 2015
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Resonant field amplification across no-wall 8 limit

* MARS-K simulation already showed plasma response field (called RFA, resonant field amplification) can
be increased almost linearly across the no-wall limit

* GPEC also reproduces the trend, as well as phase-shift due to the torque

* Furthermore, GPEC predicts that the plasma response can be eventually peaked and decreased if it
crosses oW,;,...=0 limit, but the peak is limited by the finite torque

NSTX-U RFA prediction (I,=2MA n=1)

Roll over at Byx—o

Recaptured DIII-D n=1 RFA  Z. Wang, PRL 2015

(a) Amplitude (b) Phase

e—e |deal

. , . e—e Kinetic ; N
30 Experiment 150 ] 20 1
IPEC =
I GPEC i g 15l
- 100 E 3
g 20} 4 g ]
3 g &)
o a 1 10
% 50} ] CQR
10F 3 _ o
[ 50
of a1
1.0 15 2.0 2.5 1.0 15 " 20 2§ 8% 25 30 35 .0
(iM " ﬁN
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Toroidal phase shift in plasma response and self-shielding

* Torque creates toroidal phase-shift in plasma response NTV vs. ExB

Ideal Response

Kinetic Response

Ty INM]

(NSTX-U I,=2MA, By, =3.0, n=1)

* Toroidal phase shift increases along with torque, and >
eventually coupling between external field and plasma can L0 | | |
become inefficient, resulting in self-shielding process A. Boozer, PRL 2001 0.2 /0-3 0.4
Wg /WEo
(*og, From TRANSP with 12MW NBI)
Q@ NSTX-U

57t APS-DPP, J.-K. Park, Nov. 2015

25



Construction of torque response matrix to external field

* Given displacement, torque is determined by imaginary part of plasma response matrix:
Integrated torque T, (l// ) = EL [nImW,]=
* GPEC solution matrix relates displacement E, (y) to field @(y =y,) on the boundary
Leading to 7 (l//) = n®' (AT (1,1/))_1 ®, where A, (l//) 1s imaginary part of inductance matrix
* Virtual casing principle relates (total) field to external (vacuum) field on the boundary by:

® = AL'®" = P®", where L is surface inductance and P is permeability matrix

Q@ONSTX-U 57t APS-DPP, J.-K. Park, Nov. 2015
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Construction of torque response matrix to external field

Given displacement, torque is determined by imaginary part of plasma response matrix:
Integrated torque T, (l// ) = EL [nImW,]=
GPEC solution matrix relates displacement E, (y) to field @(y =y,) on the boundary
Leading to 7 (l//) = n®' (AT (1,1/))_1 ®, where A, (l//) 1s imaginary part of inductance matrix
Virtual casing principle relates (total) field to external (vacuum) field on the boundary by:

® = AL'®" = P®", where L is surface inductance and P is permeability matrix

So one can obtain the integrated NTV torque up to any radial point, once external field is known, by
_ Pt bt = Bt x
7,(v)=n®"P(A,(v)) PO =0 T(y)

T(y)=nP! ( A, (1//))_1 P is Hermitian, although P (i.e. plasma response) is non-Hermitian

Q@ONSTX-U 57t APS-DPP, J.-K. Park, Nov. 2015
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Theoretically maximum (or minimum) integrated torque
and external field required to produce them

* Theoretical maximum (minimum) integrated torque, when power of external field is fixed, is given by the
largest (smallest) eigenvalue A of the torque response matrix

i (V) = Ay fOr ()

* Also, one can obtain the maximum (or minimum) torque possible for any arbitrary interval (v, v,), given
the total integrated torque fixed:

Yy (1/12)—1'4) (l//l) _ o [T(Awlz)]q)x
7,(¥,) o[ T(y,) |o*

Question : Maximize (or minimize) R =

X

Answer:R =A_ for T '(y Ty ,,) and its eigenvector gives required external field

* In general, quadratic matrix optimizer can answer more complicated demands in NTV and non-resonant
field optimization (e.g. when negative torque can exist, and when external field is limited by coils)
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Theoretically maximum torque inside a given flux surface
relative to the total integrated torque

* Maximum torque ratio at a given y to the total integrated torque is given by:

R _=A_ for T (y,)T(y)
J.-K. Park, PRL 2013 for KSTAR experiments
» Eigenvector shows the importance of low and “negative m” mode (i.e. backward helicity mode), to
increase the torque only in the core by deeper penetration

Maximum torque % inside a given flux surface External field maximizing the torque
0.6 : : : . : : :
T .y <05
g o5 HEE ¢y <0.9
S v ,
g 80r E oal Negative m modes
S
| £
E @©
i 8 0.3}
g (*Rotation from TRANSP N
5 40 with 12MW NBI) £ 02
'g — Rotation 5% 2
2 20 — Rotation 50% | 0.1
'_

— Rotation 100% >

8 0.2 0.4 0.6 0.8 1.0 00030 -2 -10 0 10 20 30 40

Y (NSTX-U IP=2MA, BN =3.4, n=1) Poloidal mode number m
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Optimization of local torque to the total integrated torque

¢ Maximum torque for interval (y,,,) to the total integrated torque 1s given by:

R _=A__ for T (y,)T(Ay)

ma.

* Eigenvector shows delicate compensations between negative m modes and dominant positive m modes

Optimized torque proﬁle for given interval: External field optlmlzmg the local torque:
0.45 0.6
— 1/;<05 — 02<¢<07 — 04<w<09 [ 04<¢N<09

o
>
o

0.5 HEE ¢y <09

I
>

Normalized amplitude
o
w

v

0.1

Optimized torque density profile [N/m? ]
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¢ Poloidal mode number m

(NSTX-U I,=2MA, By =3.4, n=1)
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Summary and Future work

* 3D force balance with tensor pressure for Maxwellian equilibrium has been solved directly, leading to
modified kinetic Euler-Lagrange equation

* General perturbed equilibrium code (GPEC) has been successfully developed to numerically integrate the
new Euler-Lagrange equation, giving 3D equilibrium consistent with NTV torque

* GPEC shows various stability limits of kinetic energy principle, and reproduces RFA trends
 Self-consistent NTV can be calculated by non-Hermitian plasma response matrix including NTV torque

* Torque response matrix provides a new and systematic way of NTV and non-resonant field optimization,
revealing the importance of backward helicity modes for local torque optimization

* GPEC provides all the information of self-consistent NTV torque in a matrix function form, which can be
coupled to external coils and matrix optimizers to optimize local torque under various constraints
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