

Torque-consistent 3D Force Balance and Optimization of Non-resonant Fields in Tokamaks

Jong-Kyu Park N. C. Logan, Z. R. Wang, A. H. Glasser¹, A. H. Boozer², E. Kolemen³, M. Lanctot⁴, S. Lazerson, W. Guttenfelder, J. E. Menard, and NSTX-U Team *Princeton Plasma Physics Laboratory, USA*

¹Fusion Theory and Computation Inc., ²Columbia University ³Princeton University ⁴General Atomics

57th APS-DPP Meeting Savannah GA - Nov. 18, 2015

Work supported by U.S. DOE Contract DE-AC02-09CH11466

Motivation

- A small non-axisymmetric (3D) magnetic perturbation in tokamaks can significantly modify plasma performance by altering transport and stability
- It is important to control 3D field, for both resonant (RMP) and non-resonant (NRMP) parts
- <u>NRMP</u> can induce substantial level of non-ambipolar transport and $E \times B$ modification
 - As well known by neoclassical toroidal viscosity (NTV) and magnetic braking of toroidal rotation
 - NRNP optimization is critical to control NTV in RMP/EF application, and also rotation control
- NTV evaluation requires 3D equilibrium, but NTV creates currents associated with torque and can eventually modify 3D equilibrium need self-consistent formulation
- This talk will describe a method of <u>self-consistent NTV calculations</u> and development of <u>general perturbed equilibrium code (GPEC)</u>, which solves kinetic Euler-Lagrange equation

Motivation to improve non-resonant field optimization

- Non-resonant field optimization was actively investigated for Nonaxisymmetric control coil (NCC) design in NSTX-U, by adopting advanced stellarator optimizers and IPEC-PENT model for NTV
- However, this smart optimizer even requires up to 100-1000 code runs to approach to a desired solution, and even that solution may be not a global optimum
- Important questions in optimization (given an NTV model):
 - What is the maximum or minimum torque, given a power of field?
 - What are the external fields to generate such an optimal torque?
 - What are the external fields to maximize a local torque, when the total integrated torque is fixed, or under more complicated constraints?

```
\frac{\text{IPECOPT optimization}}{\text{To maximize core n=1 torque (}\psi < 0.5\text{)}, \\ \text{while minimizing others}} \\ (\text{NSTX-U I}_{\text{P}}=1.6\text{MA}, \beta_{\text{N}}=3.1, q_{95}=8.2) \\ \text{S. Lazerson, PPCF 2015} \\ \hline
```


Motivation to improve non-resonant field optimization

- Non-resonant field optimization was actively investigated for Nonaxisymmetric control coil (NCC) design in NSTX-U, by adopting advanced stellarator optimizers and IPEC-PENT model for NTV
- However, this smart optimizer even requires up to 100-1000 code runs to approach to a desired solution, and even that solution may be not a global optimum
- Important questions in optimization (given an NTV model):
 - What is the maximum or minimum torque, given a power of field?
 - What are the external fields to generate such an optimal torque?
 - What are the external fields to maximize a local torque, when the total integrated torque is fixed, or under more complicated constraints
- <u>GPEC provides a systematic way to answer all of these questions</u> by constructing non-Hermitian plasma response matrix including torque response

Outline

- Theory and formulation of 3D force balance with anisotropic pressure tensor
- Derivation of modified kinetic Euler-Lagrange (Newcomb) equation

$$\left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)' - \left(K_{L}^{\dagger}\Xi_{\psi}' + G\Xi_{\psi}\right) = 0$$

• General perturbed equilibrium code (GPEC) and applications to kinetic energy principle

$$\delta W_{_{ideal}} < \delta W_{_{KO}} < \delta W_{_{Kinetic}} < \delta W_{_{CGI}}$$

- Characteristics of kinetic plasma response and torque
- Torque response matrix and optimization of non-resonant fields

$$\tau_{\varphi}(\psi) = \Phi^{x^{\dagger}} T(\psi) \Phi^{x}$$

• Summary and future work

Force balance with tensor pressure

• A single-fluid description, with quasi-neutrality for small gyro-radius:

$$\vec{7} \cdot \vec{T} = \vec{\nabla} \cdot \vec{P}$$
 where $\vec{T} = \vec{B}\vec{B} - B^2\vec{I}/2$ and $\vec{P} = (p_{\parallel} - p_{\perp})\hat{b}\hat{b} + p_{\perp}\vec{I}$

with kinetic approaches: $p_{\parallel} = \int d^3 v M v_{\parallel}^2 f$ and $p_{\perp} = \int d^3 v \frac{1}{2} M v_{\perp}^2 f$

- We need to directly solve force balance, since the force operator is not self-adjoint due to the torque
- I. Parallel force balance: $\vec{B} \cdot \vec{\nabla} \cdot \vec{P} = 0$
- II. Toroidal force balance: $\vec{j} \cdot \vec{\nabla} \psi_P = \frac{\partial \vec{x}}{\partial \varphi} \cdot \vec{\nabla} \cdot \vec{P}$

which implies radial currents associated with toroidal torque

III. Radial force balance:

$$\vec{\nabla}_{\perp} \left(p_{\perp} + \frac{B^2}{2} \right) = \vec{\kappa} \left(B^2 + p_{\perp} - p_{\parallel} \right)$$

Force balance with tensor pressure

• A single-fluid description, with quasi-neutrality for small gyro-radius:

$$\vec{\nabla} \cdot \vec{T} = \vec{\nabla} \cdot \vec{P}$$
 where $\vec{T} = \vec{B}\vec{B} - B^2\vec{I}/2$ and $\vec{P} = (p_{\parallel} - p_{\perp})\hat{b}\hat{b} + p_{\perp}\vec{I}$
with kinetic approaches: $p_{\parallel} = \int d^3 v M v_{\parallel}^2 f$ and $p_{\perp} = \int d^3 v \frac{1}{2} M v_{\perp}^2 f$

- <u>We need to directly solve force balance, since the force operator is not self-adjoint due to the torque</u>
- I. Parallel force balance: $\vec{B} \cdot \vec{\nabla} \cdot \vec{P} = 0$ *Neoclassical parallel viscosity: $\sum_{i,e} \left\langle \vec{B} \cdot \vec{\nabla} \cdot \vec{P} \right\rangle = 0$ K. Shaing, PF 1983 II. Toroidal force balance: $\vec{j} \cdot \vec{\nabla} \psi_P = \frac{\partial \vec{x}}{\partial \varphi} \cdot \vec{\nabla} \cdot \vec{P}$ *Neoclassical Toroidal Viscosity: $q \Gamma_{NA}^{\psi} = \left\langle \frac{\partial \vec{x}}{\partial \tilde{\varphi}} \cdot \vec{\nabla} \cdot \vec{P} \right\rangle$

which implies radial currents associated with toroidal torque

III. Radial force balance:

$$\vec{\nabla}_{\perp} \left(p_{\perp} + \frac{B^2}{2} \right) = \vec{\kappa} \left(B^2 + p_{\perp} - p_{\parallel} \right)$$

"Perturbed" force balance with tensor pressure to include non-axisymmetric magnetic perturbation

• Perturbed force balance with

 $f = f_0 + \delta f$ on Unperturbed magnetic coordinates $\vec{x} = (\psi_0, \theta_0, \varphi_0)$

• "Lagrangian" correction is required in Eulerian Formulation:

 $\delta B_L \sim \delta B(\vec{x}) + \vec{\xi} \cdot \vec{\nabla} B_0(\vec{x})$

$$\delta f_{L} = f_{0}\left(\vec{x} + \vec{\xi}\right) + \delta f\left(\vec{x} + \vec{\xi}\right) - f_{0}(\vec{x}) \sim \delta f(\vec{x}) + \vec{\xi} \cdot \vec{\nabla} f_{0}(\vec{x})$$

• Perturbed tensor pressure equilibrium on Eulerian frame:

$$\delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} + \vec{\nabla} \cdot \left(\vec{\xi} \cdot \vec{\nabla} \vec{P}\right) = \vec{\nabla} \cdot \left(\delta p_{\perp} \vec{I} + (\delta p_{\parallel} - \delta p_{\perp}) \hat{b} \hat{b}\right) + \vec{\nabla} \cdot \left(\frac{\delta \vec{B}_{\perp} \hat{b} + \hat{b} \delta \vec{B}_{\perp}}{B} \left(p_{\parallel} - p_{\perp}\right) + \left[\delta B_{\parallel} \frac{\partial}{\partial B} + \delta \Phi \frac{\partial}{\partial \Phi}\right] \left(p_{\parallel} - p_{\perp}\right)\right)$$

"Perturbed" force balance with tensor pressure to include non-axisymmetric magnetic perturbation

• Perturbed force balance with

 $f = f_0 + \delta f$ on Unperturbed magnetic coordinates $\vec{x} = (\psi_0, \theta_0, \varphi_0)$

• "Lagrangian" correction is required in Eulerian Formulation:

 $\delta B_{L} \sim \delta B(\vec{x}) + \vec{\xi} \cdot \vec{\nabla} B_{0}(\vec{x})$

$$\delta f_{L} = f_{0}\left(\vec{x} + \vec{\xi}\right) + \delta f\left(\vec{x} + \vec{\xi}\right) - f_{0}(\vec{x}) \sim \delta f(\vec{x}) + \vec{\xi} \cdot \vec{\nabla} f_{0}(\vec{x})$$

• Perturbed tensor pressure equilibrium on Eulerian frame, from Maxwellian: $f_0 = f_M$ then $\vec{j} \times \vec{B} = \vec{\nabla}p$, and

$$\delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} + \vec{\nabla} \cdot \left(\vec{\xi} \cdot \vec{\nabla} \vec{P}\right) = \vec{\nabla} \cdot \left(\delta p_{\perp} \vec{I} + (\delta p_{\parallel} - \delta p_{\perp}) \hat{b} \hat{b}\right) + \vec{\nabla} \cdot \left(\frac{\delta \vec{B}_{\perp} \hat{b} + \hat{b} \delta \vec{B}_{\perp}}{B} \left(p_{\parallel} - p_{\perp}\right) + \left[\delta B_{\parallel} \frac{\partial}{\partial B} + \delta \Phi \frac{\partial}{\partial \Phi}\right] \left(p_{\parallel} - p_{\perp}\right)\right)$$
$$\delta \vec{\Pi} \equiv \delta p_{\perp} \vec{I} + (\delta p_{\parallel} - \delta p_{\perp}) \hat{b} \hat{b} \text{ where } \delta p_{\parallel} = \int d^{3} v M v_{\parallel}^{2} \delta f_{L} \text{ and } \delta p_{\perp} = \int d^{3} v \frac{1}{2} M v_{\perp}^{2} \delta f_{L}$$

Parallel, toroidal, radial force balance with non-axisymmetric magnetic perturbation

I. Parallel force balance – Automatically satisfied by orbit averaging

$$\hat{b} \cdot \vec{\nabla} \cdot \delta \vec{\Pi} = 0$$
, which holds for orbit-averaged $\delta f_b = \oint \frac{dl}{v_{\parallel}} \delta f / \oint \frac{dl}{v_{\parallel}}$

II. Toroidal force balance – First-order radial currents associated with toroidal torque

$$\chi' \delta \vec{j}^{\psi} = \frac{\partial \vec{x}}{\partial \varphi} \cdot \left(-\vec{j} \times \delta \vec{B} - \vec{\nabla} \left(\vec{\xi} \cdot \vec{\nabla} p \right) + \vec{\nabla} \cdot \delta \vec{\Pi} \right)$$

*Note first-order $\left\langle \frac{\partial \vec{x}}{\partial \varphi} \cdot \vec{\nabla} \cdot \delta \vec{\Pi} \right\rangle = 0$, but second-order $\left\langle \frac{\partial \vec{x}}{\partial \tilde{\varphi}} \cdot \vec{\nabla} \cdot \delta \vec{\Pi} \right\rangle$, on perturbed $(\tilde{\psi}, \tilde{\theta}, \tilde{\varphi})$

III. Radial force balance – First-order pressure-tension force balance

$$\frac{\partial}{\partial \psi} \Big(\delta p_{\perp} - \vec{\xi} \cdot \vec{\nabla} p + \vec{B} \cdot \delta \vec{B} \Big) = B^2 \delta \kappa_{\psi} + \Big(2\vec{B} \cdot \delta \vec{B} - (\delta p_{\parallel} - \delta p_{\perp}) \Big) \kappa_{\psi} + (\hat{b} \cdot \vec{\nabla}) \Big(\delta p_{\perp} + \vec{B} \cdot \delta \vec{B} \Big) \hat{b}_{\psi}$$

Parallel, toroidal, radial force balance with non-axisymmetric magnetic perturbation

---> These two equations, with
$$\delta \vec{j} = \vec{\nabla} \times \delta \vec{B}$$
 and $\delta \vec{B} = \vec{\nabla} \times (\vec{\xi} \times \vec{B})$, determines $\vec{\xi} \cdot \vec{\nabla} \psi$ and $\vec{\xi} \cdot \vec{\nabla} \alpha$ (where $\alpha \equiv q\theta - \phi$)

II. Toroidal force balance – First-order radial currents and toroidal torque

$$\chi'\delta\vec{j}^{\psi} = \frac{\partial\vec{x}}{\partial\varphi} \cdot \left(-\vec{j} \times \delta\vec{B} - \vec{\nabla}\left(\vec{\xi} \cdot \vec{\nabla}p\right) + \vec{\nabla} \cdot \delta\vec{\Pi}\right)$$

*Note first-order $\left\langle\frac{\partial\vec{x}}{\partial\varphi} \cdot \vec{\nabla} \cdot \delta\vec{\Pi}\right\rangle = 0$, but second-order $\left\langle\frac{\partial\vec{x}}{\partial\tilde{\varphi}} \cdot \vec{\nabla} \cdot \delta\vec{\Pi}\right\rangle$, on perturbed $(\tilde{\psi}, \tilde{\theta}, \tilde{\varphi})$

III. Radial force balance – First-order pressure-tension force balance

$$\frac{\partial}{\partial \psi} \Big(\delta p_{\perp} - \vec{\xi} \cdot \vec{\nabla} p + \vec{B} \cdot \delta \vec{B} \Big) = B^2 \delta \kappa_{\psi} + \Big(2\vec{B} \cdot \delta \vec{B} - (\delta p_{\parallel} - \delta p_{\perp}) \Big) \kappa_{\psi} + (\hat{b} \cdot \vec{\nabla}) \Big(\delta p_{\perp} + \vec{B} \cdot \delta \vec{B} \Big) \hat{b}_{\psi}$$

Formulation with orbit-averaged distribution function and bounce-Harmonic Fourier representation

• Fourier representation of displacement and orbit-averaged perturbed distribution function:

$$\xi(\psi,\theta,\varphi) = \sum \Xi_{mn}(\psi) e^{i(m\theta - n\varphi)} \text{ and } \delta f_{Lb}(\psi,\varphi,E,\mu) = \sum \delta f_{\pm 1\ell n}(\psi,E,\mu) e^{in\alpha - i(\ell - \sigma nq)h(\sigma,\theta)} \text{ F. Porcelli, POP 1994}$$

• Perturbed distribution function for collisionless plasma, and collisional plasmas with Krook operator:

$$\delta f_{\pm 1\ell n} = \frac{n\omega_b / e}{\left(\ell - \sigma nq\right)\omega_\ell - n\left(\omega_E + \omega_B\right) + i\nu_{eff}} \frac{\partial f_M}{\partial \psi_p} \delta J_{\pm 1\ell n} \equiv R_{\ell n} \delta J_{\pm 1\ell n}, \text{ where } \delta J \text{ is action variation}$$

Formulation with orbit-averaged distribution function and bounce-Harmonic Fourier representation

• Fourier representation of displacement and orbit-averaged perturbed distribution function:

$$\xi(\psi,\theta,\varphi) = \sum \Xi_{mn}(\psi) e^{i(m\theta - n\varphi)} \text{ and } \delta f_{Lb}(\psi,\varphi,E,\mu) = \sum \delta f_{\pm 1\ell n}(\psi,E,\mu) e^{in\alpha - i(\ell - \sigma nq)h(\sigma,\theta)} \text{ F. Porcelli, POP 1994}$$

• Perturbed distribution function for collisionless plasma, and collisional plasmas with Krook operator:

$$\delta f_{\pm 1\ell n} = \frac{n\omega_b / e}{\left(\ell - \sigma nq\right)\omega_\ell - n\left(\omega_E + \omega_B\right) + i\nu_{eff}} \frac{\partial f_M}{\partial \psi_p} \delta J_{\pm 1\ell n} \equiv R_{\ell n} \delta J_{\pm 1\ell n}, \text{ where } \delta J \text{ is action variation}$$

- Connections to well-known kinetic energy principles in collisionless limit:
 - I. Kruskal-Oberman for Maxwellian (MHD scale): R_{ln}

$$R_{\ell n} = -\frac{\omega_b}{T} f_M \text{ (Only } \ell = 0)$$
$$R_{\ell n} = -\frac{\omega_b}{T} f_M \text{ (All } \ell)$$

III. Antonson-Lee for Maxwellian (Drift MHD scale):
$$R_{\ell n} = \lim_{v \to 0} R_{\ell n}$$

Modified kinetic Euler-Lagrange equation

- Combing all the components, equations for $(\Xi_{\psi}, \Xi_{\alpha})$ poloidal modes: Toroidal balance: $A\Xi_{\alpha} + B_R \Xi_{\psi}' + C_R \Xi_{\psi} = 0$ where $' \equiv \frac{\partial}{\partial \psi}$ Radial balance: $(D\Xi_{\psi}' + E_R \Xi_{\psi} + B_L^{\dagger} \Xi_{\alpha})' - (E_L^{\dagger} \Xi_{\psi}' + H \Xi_{\psi} + C_L^{\dagger} \Xi_{\alpha}) = 0$
- Leading to modified kinetic Euler-Lagrange equation:

$$\left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)' - \left(K_{L}^{\dagger}\Xi_{\psi}' + G\Xi_{\psi}\right) = 0$$

* Ξ : Poloidal mode vector for ξ $A \equiv A_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{A} \right)$ $B_{R} \equiv B_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{B} \right)$ $B_{I} \equiv B_{I} + \int dE \, d\mu \left(W^{A\dagger} R^{*} W^{B} \right)$ $C_{R} \equiv C_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{C} \right)$ $C_{L} \equiv C_{I} + \int dE \, d\mu \left(W^{A\dagger} R^{*} W^{C} \right)$ $D \equiv D_{I} + \int dE \, d\mu \left(W^{B\dagger} R W^{B} \right)$ $E_{R} \equiv E_{I} + \int dE \, d\mu \left(W^{B\dagger} R W^{C} \right)$ $E_{L} \equiv E_{I} + \int dE \, d\mu \left(W^{B\dagger} R^{*} W^{C} \right)$ $H \equiv H_{I} + \int dE \, d\mu \left(W^{C\dagger} R W^{C} \right)$ $F \equiv D - B_I^{\dagger} A^{-1} B_P$ $K_{R} \equiv E_{P} - B_{T}^{\dagger} A^{-1} C_{P}$ $K_L \equiv E_L - B_R^{\dagger} A^{-1} C_L$ $G \equiv H - C_L^{\dagger} A^{-1} C_R$ $\delta J = W^A \Xi_{\alpha} + W^B \Xi_{\mu}' + W^C \Xi_{\mu}$

Modified kinetic Euler-Lagrange equation

- Combing all the components, equations for $(\Xi_{\psi}, \Xi_{\alpha})$ poloidal modes: Toroidal balance: $A\Xi_{\alpha} + B_R \Xi_{\psi}' + C_R \Xi_{\psi} = 0$ where $' \equiv \frac{\partial}{\partial \psi}$ Radial balance: $(D\Xi_{\psi}' + E_R \Xi_{\psi} + B_L^{\dagger} \Xi_{\alpha})' - (E_L^{\dagger} \Xi_{\psi}' + H \Xi_{\psi} + C_L^{\dagger} \Xi_{\alpha}) = 0$
- Leading to modified kinetic Euler-Lagrange equation:

$$\left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)' - \left(K_{L}^{\dagger}\Xi_{\psi}' + G\Xi_{\psi}\right) = 0$$

• Ideal (and collisionless) Euler-Lagrange (DCON) equation:

$$\left(F_{I}\Xi_{\psi}' + K_{I}\Xi_{\psi}\right)' - \left(K_{I}^{\dagger}\Xi_{\psi}' + G_{I}\Xi_{\psi}\right) = 0 \quad \text{A. Glasser, APS 1997}$$

* F_I, G_I becomes Hermitian, and $K_R = K_L = K_I$

 Ideal matrices and Euler-Lagrange equation were shown to be identical to DCON matrices and equation, showing directly: Ideal perturbed equilibrium = Minimum state of potential energy * Ξ : Poloidal mode vector for ξ $A \equiv A_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{A} \right)$ $B_{R} \equiv B_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{B} \right)$ $B_{I} \equiv B_{I} + \int dE \, d\mu \left(W^{A\dagger} R^{*} W^{B} \right)$ $C_{R} \equiv C_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{C} \right)$ $C_{I} \equiv C_{I} + \int dE \, d\mu \left(W^{A\dagger} R^{*} W^{C} \right)$ $D \equiv D_{I} + \int dE \, d\mu \left(W^{B\dagger} R W^{B} \right)$ $E_{R} \equiv E_{I} + \int dE \, d\mu \left(W^{B\dagger} R W^{C} \right)$ $E_{I} \equiv E_{I} + \int dE \, d\mu \left(W^{B\dagger} R^{*} W^{C} \right)$ $H \equiv H_{I} + \int dE \, d\mu \left(W^{C\dagger} R W^{C} \right)$ $F \equiv D - B_{I}^{\dagger} A^{-1} B_{P}$ $K_{p} \equiv E_{p} - B_{I}^{\dagger} A^{-1} C_{p}$ $K_{I} \equiv E_{I} - B_{P}^{\dagger} A^{-1} C_{I}$ $G \equiv H - C_I^{\dagger} A^{-1} C_P$ $\delta J = W^A \Xi_{\alpha} + W^B \Xi_{\mu}' + W^C \Xi_{\mu}$

Modified kinetic Euler-Lagrange equation

- Combing all the components, equations for $(\Xi_{\psi}, \Xi_{\alpha})$ poloidal modes: Toroidal balance: $A\Xi_{\alpha} + B_R \Xi_{\psi}' + C_R \Xi_{\psi} = 0$ where $' \equiv \frac{\partial}{\partial \psi}$ Radial balance: $(D\Xi_{\psi}' + E_R \Xi_{\psi} + B_L^{\dagger} \Xi_{\alpha})' - (E_L^{\dagger} \Xi_{\psi}' + H \Xi_{\psi} + C_L^{\dagger} \Xi_{\alpha}) = 0$
- Leading to modified kinetic Euler-Lagrange equation:

$$\left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)' - \left(K_{L}^{\dagger}\Xi_{\psi}' + G\Xi_{\psi}\right) = 0$$

• Ideal (and collisionless) Euler-Lagrange (DCON) equation:

$$\left(F_{I}\Xi_{\psi}' + K_{I}\Xi_{\psi}\right)' - \left(K_{I}^{\dagger}\Xi_{\psi}' + G_{I}\Xi_{\psi}\right) = 0 \quad \text{A. Glasser, APS 1997}$$

 $*F_{I}, G_{I}$ becomes Hermitian, and $K_{R} = K_{L} = K_{I}$

• Cylindrical Euler-Lagrange (Newcomb) equation:

$$\left(f\xi'\right)' - g\xi = 0$$

* Ξ : Poloidal mode vector for ξ $A \equiv A_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{A} \right)$ $B_{R} \equiv B_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{B} \right)$ $B_{I} \equiv B_{I} + \int dE \, d\mu \left(W^{A\dagger} R^{*} W^{B} \right)$ $C_{R} \equiv C_{I} + \int dE \, d\mu \left(W^{A\dagger} R W^{C} \right)$ $C_{I} \equiv C_{I} + \int dE \, d\mu \left(W^{A\dagger} R^{*} W^{C} \right)$ $D \equiv D_{I} + \int dE \, d\mu \left(W^{B\dagger} R W^{B} \right)$ $E_{R} \equiv E_{I} + \int dE \, d\mu \left(W^{B\dagger} R W^{C} \right)$ $E_{L} \equiv E_{I} + \int dE \, d\mu \left(W^{B\dagger} R^{*} W^{C} \right)$ $H \equiv H_{I} + \int dE \, d\mu \left(W^{C\dagger} R W^{C} \right)$ $F \equiv D - B_{I}^{\dagger} A^{-1} B_{p}$ $K_{p} \equiv E_{p} - B_{I}^{\dagger} A^{-1} C_{p}$ $K_{I} \equiv E_{I} - B_{R}^{\dagger} A^{-1} C_{I}$ $G \equiv H - C_I^{\dagger} A^{-1} C_R$ $\delta J = W^A \Xi_{\alpha} + W^B \Xi_{\psi}' + W^C \Xi_{\psi}$

Energy and (NTV) torque consistent with derived tensor pressure equilibrium with non-axisymmetric perturbation

• Energy integration with tensor force operator (in complex representation with $exp(in\varphi)$):

$$2\delta W + i\frac{\tau_{\varphi}}{n} = -\int \vec{\xi} \cdot \left(\delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} + \vec{\nabla} \left(\vec{\xi} \cdot \vec{\nabla} p\right) - \vec{\nabla} \cdot \left(\delta p_{\perp} \vec{I} + (\delta p_{\parallel} - \delta p_{\perp}) \hat{b} \hat{b}\right)\right) dx^{3}$$

$$= \int d\psi \left(\Xi_{\alpha}^{\dagger} A \Xi_{\alpha} + \Xi_{\alpha}^{\dagger} B_{R} \Xi_{\psi}' + \Xi_{\alpha}^{\dagger} C_{R} \Xi_{\psi} + \Xi_{\psi}'^{\dagger} B_{L}^{\dagger} \Xi_{\alpha} + \Xi_{\psi}' C_{L}^{\dagger} \Xi_{\alpha} + \Xi_{\psi}'^{\dagger} D \Xi_{\psi}' + \Xi_{\psi}'^{\dagger} E_{R} \Xi_{\psi} + \Xi_{\psi}' E_{L}^{\dagger} \Xi_{\psi}' + \Xi_{\psi}' H \Xi_{\psi}'\right)$$

- Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which is precisely what is known as neoclassical toroidal viscosity (NTV) torque J.-K. Park, POP 2011
- Using $A\Xi_{\alpha} + B_R \Xi'_{\psi} + C_R \Xi_{\psi} = 0$ and integrating by parts:

$$2\delta W + i\frac{\tau_{\varphi}}{n} = \int d\psi \left[\Xi_{\psi}^{\dagger} \left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)\right]' - \int d\psi \left[\Xi_{\psi}^{\dagger} \left(\left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)' - \left(K_{L}^{\dagger}\Xi_{\psi}' + G\Xi_{\psi}\right)\right)\right] \\ * = 0 \text{ in equilibrium, by modified Euler-Lagrange equation}$$

Energy and (NTV) torque consistent with derived tensor pressure equilibrium with non-axisymmetric perturbation

• Energy integration with tensor force operator (in complex representation with $exp(in\varphi)$):

$$2\delta W + i\frac{\tau_{\varphi}}{n} = -\int \vec{\xi} \cdot \left(\delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} + \vec{\nabla} \left(\vec{\xi} \cdot \vec{\nabla} p\right) - \vec{\nabla} \cdot \left(\delta p_{\perp} \vec{I} + (\delta p_{\parallel} - \delta p_{\perp}) \hat{b} \hat{b}\right)\right) dx^{3}$$

$$= \int d\psi \left(\Xi_{\alpha}^{\dagger} A \Xi_{\alpha} + \Xi_{\alpha}^{\dagger} B_{R} \Xi_{\psi}' + \Xi_{\alpha}^{\dagger} C_{R} \Xi_{\psi} + \Xi_{\psi}'^{\dagger} B_{L}^{\dagger} \Xi_{\alpha} + \Xi_{\psi}' C_{L}^{\dagger} \Xi_{\alpha} + \Xi_{\psi}'^{\dagger} D \Xi_{\psi}' + \Xi_{\psi}'^{\dagger} E_{R} \Xi_{\psi} + \Xi_{\psi}' E_{L}^{\dagger} \Xi_{\psi}' + \Xi_{\psi}' H \Xi_{\psi}'\right)$$

- Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which is precisely what is known as neoclassical toroidal viscosity (NTV) torque J.-K. Park, POP 2011
- Using $A\Xi_{\alpha} + B_R \Xi_{\psi}' + C_R \Xi_{\psi} = 0$ and integrating by parts:

$$2\delta W + i\frac{\tau_{\varphi}}{n} = \left[\Xi_{\psi}^{\dagger} \left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)\right] \text{ * Only surface term remains}$$

Energy and (NTV) torque consistent with derived tensor pressure equilibrium with non-axisymmetric perturbation

• Energy integration with tensor force operator (in complex representation with $exp(in\varphi)$):

$$2\delta W + i\frac{\tau_{\varphi}}{n} = -\int \vec{\xi} \cdot \left(\delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} + \vec{\nabla} \left(\vec{\xi} \cdot \vec{\nabla} p\right) - \vec{\nabla} \cdot \left(\delta p_{\perp} \vec{I} + (\delta p_{\parallel} - \delta p_{\perp}) \hat{b} \hat{b}\right)\right) dx^{3}$$
$$= \int d\psi \left(\Xi_{\alpha}^{\dagger} A \Xi_{\alpha} + \Xi_{\alpha}^{\dagger} B_{R} \Xi_{\psi}^{\prime} + \Xi_{\alpha}^{\dagger} C_{R} \Xi_{\psi} + \Xi_{\psi}^{\prime\dagger} B_{L}^{\dagger} \Xi_{\alpha} + \Xi_{\psi}^{\dagger} C_{L}^{\dagger} \Xi_{\alpha} + \Xi_{\psi}^{\prime\dagger} D \Xi_{\psi}^{\prime} + \Xi_{\psi}^{\prime\dagger} E_{R} \Xi_{\psi} + \Xi_{\psi}^{\dagger} E_{L}^{\dagger} \Xi_{\psi}^{\prime} + \Xi_{\psi}^{\dagger} H \Xi_{\psi}^{\dagger}\right) dx^{3}$$

- Hermitian part becomes perturbed energy in the system, and anti-Hermitian part is toroidal torque, which is precisely what is known as neoclassical toroidal viscosity (NTV) torque J.-K. Park, POP 2011
- Using $A\Xi_{\alpha} + B_R \Xi'_{\psi} + C_R \Xi_{\psi} = 0$ and integrating by parts:

$$2\delta W + i\frac{\tau_{\varphi}}{n} = \left[\Xi_{\psi}^{\dagger} \left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)\right] = \Xi_{\psi}^{\dagger}W_{P}\Xi_{\psi}$$

• Energy, torque, and 3D force balance are all self-consistently calculated with perturbed tensor pressure, yielding non-Hermitian plasma response matrix including torque response

Non-Hermitian Plasma Response Matrix: $W_P \equiv \left(F\Xi'_{\psi} + K_R\Xi_{\psi}\right)\Xi_{\psi}^{-1}$

57th APS-DPP, J.-K. Park, Nov. 2015

General perturbed equilibrium code (GPEC) has been successfully developed based on modified DCON and IPEC

• GPEC integrates modified kinetic Euler-Lagrange equation through modified DCON stability code

N. Logan, POP 2013

- Kinetic matrices are calculated presently by PENT, but can be flexibly extended and combined with any kinetic solver for drift-kinetic equation
- Integration from core to edge with *M* linearly independent solutions leads to non-Hermitian plasma response matrix
- Anti-Hermitian part of plasma response matrix provides all the information of torque and its profile
- It is shown that the field penetration can be strongly modified by kinetic energy and toroidal torque, throughout plasma including the neighborhood of rational surfaces

Modification of field penetration in the neighborhood of singular surfaces is important for self-consistent NTV

• Ideal Euler-Lagrange equation has regular singular points at q=m/n surface

$$\left(F_{I}\Xi_{\psi}'+K_{I}\Xi_{\psi}\right) - \left(K_{I}^{\dagger}\Xi_{\psi}'+G_{I}\Xi_{\psi}\right) = 0$$

 $F_I = QF_IQ$, $K_I = QK_I$ where $Q_{mm'} = (m - nq)\delta_{mm'}$

- Exclusion of large resonant solution in DCON means:
 - No magnetic islands and flux surfaces are nested everywhere
 - Most of complete NTV models rely on this nested flux surface condition
 - However, NTV across the singular surface is still non-integrable
- Modified kinetic Euler-Lagrange equation is not singular as long as the toroidal torque is finite

$$\left(F\Xi_{\psi}' + K_{R}\Xi_{\psi}\right)' - \left(K_{L}^{\dagger}\Xi_{\psi}' + G\Xi_{\psi}\right) = 0$$

$$F = Q\overline{F}_{K}Q - P_{L}^{\dagger}Q - QP_{R} + R_{1}, K_{R} = Q\overline{K}_{KR} + R_{2}, K_{L} = \overline{K}_{KL}Q + R_{2}$$

• Meaning that NTV torque can be integrated across nested flux surfaces, but without adhoc dissipation model near the rational surfaces

Torque density by non-resonant NCC n=1 (NSTX-U I_P =2MA, Low β_N =1.9) Non-integrable peaks 0.20 Torque density $[N/m^2]$ 0.12 ldeal Ideal-Reg GPEC 0.08 0.2 0.6 0.8 1.0 0.4 ψ_N

Verification of GPEC solution against MARS-K in zero-frequency limit

- Present GPEC with Krook collisional operator should give identical solutions to MARS-K without fluid rotation, in zero-frequency limit
- Successful benchmark was made, and both codes captured important changes in eigenfunctions
- Two codes use distinct methods in the computation, leading to different flexibility and advantages
- GPEC is a perturbed equilibrium code working for the zero-frequency limit, but can adopt any δf -solver and give the full eigenmode structure by a single run, which can be used to optimize non-resonant field

Kinetic energy principle by Kruskal-Oberman, CGL, and Antonson-Lee

- Kruskal-Oberman, Rosenbluth-Rostocker, and Newcomb used kinetic closure for anisotropic pressure and derived kinetic energy principle in MHD scale
- KO limit is equivalent to take: M. Kruskal, PF 1958

$$R_{\ell n} = -\frac{\omega_b}{T} f_M \text{ (Only } \ell = 0)$$

• CGL limit is equivalent to the upper bound of Schwartz inequality of K-O limit, and also is equivalent to take:

$$R_{\ell n} = -\frac{\omega_b}{T} f_M \text{ (All } \ell \text{)} \qquad \text{Chew, PRS 1956}$$
J. Berkery, POP 2014

• As expected, NSTX-U target studies yielded:

$$\delta W_{ideal} < \delta W_{KO} < \delta W_{Kinetic} < \delta W_{CGL}$$

*Where $\delta W_{Kinetic}$ is calculated by ignoring toroidal torque (Antonson-Lee), but the stability of the system should be determined by solving normal mode problems with the wall

T. Antoson, PF 1982

Resonant field amplification across no-wall β **limit**

- MARS-K simulation already showed plasma response field (called RFA, resonant field amplification) can be increased almost linearly across the no-wall limit
- GPEC also reproduces the trend, as well as phase-shift due to the torque
- Furthermore, GPEC predicts that the plasma response can be eventually peaked and decreased if it crosses $\delta W_{kinetic}$ =0 limit, but the peak is limited by the finite torque

Toroidal phase shift in plasma response and self-shielding

NSTX-U

Construction of torque response matrix to external field

- Given displacement, torque is determined by imaginary part of plasma response matrix: Integrated torque $\tau_{\omega}(\psi) = \Xi_{\psi}^{\dagger} [n \operatorname{Im} W_{P}] \Xi_{\psi}$
- GPEC solution matrix relates displacement $\Xi_{\psi}(\psi)$ to field $\Phi(\psi = \psi_b)$ on the boundary Leading to $\tau_{\varphi}(\psi) = n\Phi^{\dagger}(\Lambda_T(\psi))^{-1}\Phi$, where $\Lambda_T(\psi)$ is imaginary part of inductance matrix
- Virtual casing principle relates (total) field to external (vacuum) field on the boundary by:

 $\Phi = \Lambda L^{-1} \Phi^x \equiv P \Phi^x$, where *L* is surface inductance and *P* is permeability matrix

Construction of torque response matrix to external field

- Given displacement, torque is determined by imaginary part of plasma response matrix: Integrated torque $\tau_{\omega}(\psi) = \Xi_{\psi}^{\dagger} [n \operatorname{Im} W_{P}] \Xi_{\psi}$
- GPEC solution matrix relates displacement $\Xi_{\psi}(\psi)$ to field $\Phi(\psi = \psi_b)$ on the boundary Leading to $\tau_{\varphi}(\psi) = n\Phi^{\dagger}(\Lambda_T(\psi))^{-1}\Phi$, where $\Lambda_T(\psi)$ is imaginary part of inductance matrix
- Virtual casing principle relates (total) field to external (vacuum) field on the boundary by:

 $\Phi = \Lambda L^{-1} \Phi^x \equiv P \Phi^x$, where *L* is surface inductance and *P* is permeability matrix

• So one can obtain the integrated NTV torque up to any radial point, once external field is known, by

$$\tau_{\varphi}(\psi) = n\Phi^{x^{\dagger}}P^{\dagger}(\Lambda_{T}(\psi))^{-1}P\Phi^{x} \equiv \Phi^{x^{\dagger}}T(\psi)\Phi^{x}$$

 $T(\psi) \equiv nP^{\dagger} (\Lambda_T(\psi))^{-1} P$ is Hermitian, although P (i.e. plasma response) is non-Hermitian

Theoretically maximum (or minimum) integrated torque and external field required to produce them

• Theoretical maximum (minimum) integrated torque, when power of external field is fixed, is given by the largest (smallest) <u>eigenvalue λ </u> of the torque response matrix

$$\tau_{\varphi,\max}(\psi) = \lambda_{\max} \text{ for } T(\psi)$$

• Also, one can obtain the maximum (or minimum) torque possible for any arbitrary interval (ψ_1, ψ_2), given the total integrated torque fixed:

Question : Maximize (or minimize)
$$R_{\text{max}} = \frac{\tau_{\varphi}(\psi_2) - \tau_{\varphi}(\psi_1)}{\tau_{\varphi}(\psi_b)} = \frac{\Phi^{x\dagger} [T(\Delta \psi_{12})] \Phi^x}{\Phi^{x\dagger} [T(\psi_b)] \Phi^x}$$

Answer: $R_{\text{max}} = \lambda_{\text{max}}$ for $T^{-1}(\psi_b)T(\psi_{12})$ and its eigenvector gives required external field

• In general, quadratic matrix optimizer can answer more complicated demands in NTV and non-resonant field optimization (e.g. when negative torque can exist, and when external field is limited by coils)

Theoretically maximum torque inside a given flux surface relative to the total integrated torque

• Maximum torque ratio at a given ψ to the total integrated torque is given by:

 $R_{\rm max} = \lambda_{\rm max}$ for $T^{-1}(\psi_b)T(\psi)$

J.-K. Park, PRL 2013 for KSTAR experiments

• Eigenvector shows the importance of low and "negative m" mode (i.e. backward helicity mode), to increase the torque only in the core by deeper penetration

Optimization of local torque to the total integrated torque

• Maximum torque for interval (ψ_1, ψ_2) to the total integrated torque is given by:

 $R_{\rm max} = \lambda_{\rm max}$ for $T^{-1}(\psi_b)T(\Delta\psi)$

• Eigenvector shows delicate compensations between negative m modes and dominant positive m modes

Summary and Future work

- 3D force balance with tensor pressure for Maxwellian equilibrium has been solved directly, leading to modified kinetic Euler-Lagrange equation
- General perturbed equilibrium code (GPEC) has been successfully developed to numerically integrate the new Euler-Lagrange equation, giving 3D equilibrium consistent with NTV torque
- GPEC shows various stability limits of kinetic energy principle, and reproduces RFA trends
- Self-consistent NTV can be calculated by non-Hermitian plasma response matrix including NTV torque
- Torque response matrix provides a new and systematic way of NTV and non-resonant field optimization, revealing the importance of backward helicity modes for local torque optimization
- GPEC provides all the information of self-consistent NTV torque in a matrix function form, which can be coupled to external coils and matrix optimizers to optimize local torque under various constraints

