

On the conditions for the onset of nonlinear chirping structures in NSTX

Vinícius Duarte^{1,2}

Nikolai Gorelenkov¹, Mario Podestà¹ and Herb Berk³

¹Princeton Plasma Physics Laboratory ²University of São Paulo, Brazil ³University of Texas, Austin

APS Meeting, Savannah, GA, Nov 18, 2015

Chirping modes in NSTX can degrade the confinement of energetic particles

Up to 40% of injected beam is observed to be lost in DIII-D and NSTX

Chirping is ubiquitous in NSTX but rare in DIII-D. Why??

This presentation focuses on the conditions for chirping onset rather than their longterm evolution

Phase space holes and clumps in kinetically driven, dissipative systems

- Nonlinear Landau damping perspective: incomplete phase mixing leads to small sideband oscillations that may tap free energy at the edges of the plateau
- Chirping in frequency may allow for a continuous interplay between the free energy from the distribution function and the wave dissipation
- Collisions eventually degrade the resonant island plateau, and the process restarts

Vlasov simulations by Lilley and Nyqvist, PRL 2014

Nonlinear dynamics of driven kinetic systems close to threshold

Assumptions:

- Perturbative procedure for $\omega_b \ll \gamma$
- Truncation at third order due to closeness to marginal stability
- Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude *A*:

$$\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A \left(t - \tau\right) \int_0^{t-2\tau} d\tau_1 e^{-\nu_{scatt}^3 \tau^2 (2\tau/3 + \tau_1) + i\nu_{drag}^2 \tau (\tau + \tau_1)} A \left(t - \tau - \tau_1\right) A^* \left(t - 2\tau - \tau_1\right)$$

Nonlinear dynamics of driven kinetic systems close to threshold

Assumptions:

- Perturbative procedure for $\omega_b \ll \gamma$
- Truncation at third order due to closeness to marginal stability
- Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

$$\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A \left(t - \tau\right) \int_0^{t-2\tau} d\tau_1 e^{\left(\frac{\nu_{scatt}^3}{\nu_{scatt}^3}\right)^2 (2\tau/3 + \tau_1) \left(\frac{i\nu_{drag}^2}{\nu_{scatt}^3}\right)^2 (\tau + \tau_1)} A \left(t - \tau - \tau_1\right) A^* \left(t - 2\tau - \tau_1\right)$$
stabilizing destabilizing (makes integral sign flip)

Nonlinear dynamics of driven kinetic systems close to threshold

Assumptions:

- Perturbative procedure for $\omega_b \ll \gamma$
- Truncation at third order due to closeness to marginal stability
- Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

$$\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A \left(t - \tau\right) \int_0^{t-2\tau} d\tau_1 e^{\left(\frac{\nu_{scatt}^3}{\nu_{scatt}^3}\right)^2 (2\tau/3 + \tau_1) \left(\frac{i\nu_{drag}^2}{\nu_{scatt}^3}\right)^2 (\tau + \tau_1)} A \left(t - \tau - \tau_1\right) A^* \left(t - 2\tau - \tau_1\right)$$
stabilizing destabilizing (makes integral sign flip)

- If nonlinearity is weak: linear stability, solution saturates at a low level and f merely flattens (system not allowed to further evolve nonlinearly).
- If solution of cubic equation explodes: system enters a strong nonlinear phase with large mode amplitude and can be driven unstable (precursor of chirping modes).

Mode structure identification

- NOVA code: finds linear, ideal mode structures
- Its kinetic postprocessor NOVA-K computes resonance surfaces and provides damping and linear growth rates. Phase sapace and bounce averages are necessary calculate effective collisional coefficients
- NOVA's mode structures are compared with NSTX reflectometer measurements (fluid displacement times the local density gradient is equivalent to the density fluctuation)

Chirping in terms of effective collisional coefficients for realistic resonances and mode structures

Experimental observations:

Red diamonds: chirping was obseved Green dots: no chirping observed

Pitch-angle scattering: leads to loss of correlation (loss of phase information from one bounce to another)

Drag (slowing down): coherently moves structures down in velocity

Bump-on-tail modeling is not enough to resolve the regions in collisions space that allows for chirping modes

Missing physics in the simplified theoretical prediction: mode structure, (multiple) resonance surfaces and phase-space and bounce averages

Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Future work

- Implementation of the generalized criterion using NOVA code
- Study of delay in chirping in terms of injection parameters and resonances
- Development of a line-broadened quasilinear diffusion solver coupled with NOVA and NOVA-K: chirping criterion is important for identification of parameter space for quasilinear validity

Thank you