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Chirping modes in NSTX can degrade the confinement 
of energetic particles 

GAE/CAE 
Fredrickson et al, PoP 2006. 

 

TAE   Podestà et al, NF 2012 

Up to 40% of injected beam is 
observed to be lost in DIII-D 
and NSTX 
 
Chirping is ubiquitous in NSTX 
but rare in DIII-D. Why?? 
 
This presentation focuses on 
the conditions for chirping 
onset rather than their long-
term evolution 
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Phase space holes and clumps in kinetically driven, 
dissipative systems 

• Nonlinear Landau damping perspective: incomplete phase 
mixing leads to small sideband oscillations that may tap free 
energy at the edges of the plateau 

• Chirping in frequency may allow for a continuous interplay 
between the free energy from the distribution function and 
the wave dissipation 

• Collisions eventually degrade the resonant island plateau, 
and the process restarts 

Vlasov 
simulations by 
Lilley and Nyqvist, 
PRL 2014 
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Nonlinear dynamics of driven kinetic systems close to threshold 

Assumptions: 

• Perturbative procedure for  

• Truncation at third order due to closeness to marginal stability 

• Bump-on-tail modal problem, uniform mode structure 

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A: 

 

 

 

 

 

 

 
Berk, Breizman and Pekker, PRL 1996 
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Berk, Breizman and Pekker, PRL 1996           Lilley, Breizman and Sharapov, PRL 2009 
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stabilizing destabilizing (makes integral sign flip) 
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• If nonlinearity is weak: linear stability, solution saturates at a low level and f merely flattens (system 
not allowed to further evolve nonlinearly). 

• If solution of cubic equation explodes: system enters a strong nonlinear phase with large mode 
amplitude and can be driven unstable (precursor of chirping modes).  

 
Berk, Breizman and Pekker, PRL 1996           Lilley, Breizman and Sharapov, PRL 2009 
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Mode structure identification 

• NOVA code: finds linear, ideal mode structures  

• Its kinetic postprocessor NOVA-K computes resonance surfaces and provides damping and 
linear growth rates. Phase sapace and bounce averages are necessary calculate effective 
collisional coefficients 

• NOVA’s mode structures are compared with NSTX reflectometer measurements (fluid 
displacement times the local density gradient is equivalent to the density fluctuation) 
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Chirping in terms of effective collisional coefficients for 
realistic resonances and mode structures 

 
Pitch-angle scattering: leads to loss of correlation 
(loss of phase information from one bounce to 
another) 

Drag (slowing down): coherently moves structures 
down in velocity 

  

Bump-on-tail modeling is not enough to 
resolve the regions in collisions space that 
allows for chirping modes 

 

Missing physics in the simplified theoretical 
prediction: mode structure, (multiple) resonance 
surfaces and phase-space and bounce averages 

Experimental observations: 
Red diamonds: chirping was obseved 
Green dots: no chirping observed  

Follow from cubic 
 equation 
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Generalization: cubic equation with collisional coefficients 
varying along resonances and particle orbits 

Action-angle formalism for the general problem, with a similar 
perturbative approach employed before, leads to the generalized 
criterion for existence of steady-state solutions (no chirping): 
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Generalization: cubic equation with collisional coefficients 
varying along resonances and particle orbits 

Action-angle formalism for the general problem, with a similar 
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Phase space integration 

Eigenstructure information: 

Resonance surfaces: 

7 



Future work 

• Implementation of the generalized criterion using NOVA code 

 

• Study of delay in chirping in terms of injection parameters and resonances 

 

• Development of a line-broadened quasilinear diffusion solver coupled with 
NOVA and NOVA-K: chirping criterion is important for identification of 
parameter space for quasilinear validity 
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Thank you 


