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Motivation and Goal: Investigation of the link 
between microscopic physics and L-H transition 

• Turbulence-generated shear flows appear to be associated with L-H transition but the 
trigger of the transition remains unclear 

• Studies using Langmuir probes provided evidence that nonlinear exchange of kinetic 
energy between small scale turbulence and edge zonal flows 

• Recent work on C-Mod using GPI provided a timeline for the L-H transition:
- First peaking o the normalized Reynolds power 
- Then the collapse of the turbulence 
- Finally the rise of the diamagnetic electric field shear  

• Can the L-H transition be determined by interaction between flow and turbulence?  

•  Apply the velocimetry to GPI data to study the time sequence of the L-H transition on 
multiple discharges (NBI, Ohmic, and RF) 
✓ Rely on velocimetry data with both high temporal and spatial resolution 

• Study the exchange of energy between the mean flow and turbulence is analyzed using 
the k-ε model
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Approach: Summary of analysis details
• GPI data taken at ~400 kHz frame rate; Image size 24 x 30 cm 
• GPI gas has minimal effects on the plasma parameters 
• Analysis included RF, Ohmically, and NBI heated plasmas 
• Analysis spans three regions 

–  Redge :  Well inside separatrix and representing the plasma edge  
–  Rsep   :  Around the separatrix position 
–  Rsol    :  Low density region well outside the separatrix 

• Note: uncertainty in location of separatrix +/- 1 cm
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The three regions of the GPI signals exhibit 
different statistical characteristics

• Rsol signal is characterized by 
bursty fluctuations 

• Bursty behavior is generally 
associated with blobs
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Observation of a quasi-coherent mode with no detectable 
magnetic signature;  the mode is localized in the density gradient

• Quasi-coherent mode is not 
detected on the Mirnov coils 
- Mode is either electrostatic or 
magnetic signature is too weak 
to be detected 

• Mode is localized in the steep 
density (intensity) gradient 
- peaking at ~1.7 cm inside the 
separatrix
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 Implementation of imaging velocimetry using 
orthogonal dynamic programming (ODP) on GPI data

• Images are divided into parallel 
strips, or vectors 

• Transformation from one time step 
to another determines basis for 
inferred velocity field 

• ODP leads optimal transformation with good 
temporal resolution 

• ODP enables to reconstruct a 2D 
velocity field
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Imaging velocimetry enables a time-resolved analysis 
of the turbulent velocity field from GPI images

• Overlayed are the velocity field 
and the  GPI intensity
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• For each velocity component, we decompose it in mean and 
fluctuating components 
➡Mean velocity    ➾  low-pass filter up to 3 kHz 

➡Fluctuating part  ➾  high pass filter at 5 kHz  

• L-H transition time is given by the drop in GPI intensity 

• Analysis is applied to three types of discharges:  
➡NBI: 138113:138119 
➡Ohmic: 141745:141751 
➡RF:141919:141922, 142006
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Approach for the decomposition of the velocity 
field components
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Application of the ODP-based velocimetry  
for L-H transition analysis

• Two phases are distinguished: L- 
and H-modes 

• The mean is determined using 
chunks of 10 ms 
- Clear change of V𝜃 in the SOL 

• Errorbars represent the std 
between the 10 ms chunks

9

-6 -4 -2 0 2 4

-500

0

500

1000

1500

ρ (cm)

<v
Z> 

(m
s-1

)

 

 

L-mode
H-mode

Radial profiles of the poloidal velocity 
averaged for all ohmic shots

separatrix
In L-mode, there is clear transition of the direction at the separatrix of the turbulent flow 

electron diamagnetic drift  
direction

ion diamagnetic drift 
direction

L-Mode 
H-Mode

10 20 30 40 50 60 70

0

100

200

300

400
Radial pixels

In
te

ns
ity

 (A
U)

 

 

Redge
Rsep
Rsol

-5 0 5 10 15
ρ (cm)

-10 -5 00

0.02

0.04

0.06

0.08

0.1

0.12

T e
 (k

eV
)

Radius ρ (cm)
-10 -5 0 0

0.2

0.4

0.6

0.8

1

1.2

1.4

-10 -5 0 0

0.2

0.4

0.6

0.8

1

1.2

1.4

n e
 (1

013
 c

m
-3

)

Density ne

Temperature Te

(a)

(b)

Redge

Rsep

Rsol

G
P

I L
ig

ht
 In

te
ns

ity



APS-DPP, GPI Velocimetry, Diallo, November 2015

Time history of the bulk poloidal velocity across 
the L-H transition at different radii

Clear drop in velocity inside the separatrix consistent with an increase of the edge shear
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The rapid increase across the L-H transition of the bulk poloidal 
velocity in the RF cases in NSTX is similar to that observed in C-Mod 

• This appears to suggest that during the L-H 
transition the velocity shear steepens 
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Figure 5. Estimated bulk poloidal velocity based on GPI
velocimetry corrected with diamagnetic terms calculated from TS
and ECE measurements.

Plasma Phys. Control. Fusion 56 (2014) 075013Cziegler
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Analysis of the time-dependent velocities across 
the L-H transition for three regions

• Temporal resolution of  250 𝜇s is determined 
by the moving average 

• The poloidally averaged vθ shows a sharp 
change at both Rsep and Rsol 

• However, vθ drops at Redge
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The exchange of energy between the mean flow and 
turbulence is analyzed using the k-ε model: Description
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Mean flow production term

Reynolds decomposition

Model equations underlying the data analysis strategy 

Reynolds Work
total loss of local kinetic energyNet effective linear growth 

Damping rate 

of the low-frequency flow 

P. Manz et al., POP 19, 012309 (2012) 
I. Cziegler et al., NF 55, 083007 (2015) 

•  It is well-documented that during the L-H transition, a sheared flow at 
the edge is established. 

• The velocimetry analysis is extended to investigate the interaction 
between mean flow and turbulence.



APS-DPP, GPI Velocimetry, Diallo, November 2015

Time and spatial evolution of the Reynolds stress indicate a shift of 
the maximum stress towards the separatrix near the L-H transition

• Work is in progress to understand the implications of such radial shift 
• This observed reduction of Reynolds stress is in contradiction with observations 

in ohmically heated discharges in HT7
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Evolution of the turbulent energy transfer parameters 
at 1 cm ± 4 mm inside separatrix: Ohmic Discharges
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• The decrease of the Reynolds stress  appears to precede 
the reduction of the kinetic energy in the turbulence 

• Increase of the production term is consistent with a drop 
in kinetic energy of the turbulence.   
- Production term increase is also associated with an 

increase of the mean flow 

⇥

⇥

Net energy decrease
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The kinetic energy in the turbulence increases across the L-
H transition, while the mean flow drops for NBI Discharges

• Production term is inconsistent with an increase of the 
turbulence kinetic energy 
- Hypothesis: There might also be an increase of 

dissipation to small scale turbulence 
• Local fluid flow does not appear to change during the L-H
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Similar to Ohmic discharges, RF discharges also show a drop 
of the kinetic energy in the turbulence across the L-H transition
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• The decrease of the Reynolds stress correlates with the reduction of kinetic 
energy turbulence 

• Increase of the production term is consistent with a drop in kinetic energy: 
Similar to Ohmic discharges  
- Suggesting that additional torque from NBI (absent in RF and ohmic) could 

be the main difference

⇥⇥ Net energy decrease
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In NBI discharges, the rate of loss of kinetic energy from 
turbulence clearly exceeds the fluctuation driven flow

This rather strong rate of loss of local kinetic energy is consistent 
with a strong collapse of turbulence in the L-H transition
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In Ohmic discharges on the other hand, the rate of loss of kinetic 
energy from turbulence matches the fluctuation driven flow

This suggests an efficient conversion of kinetic turbulence to flow drive 
during the L-H in Ohmic discharges.
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Summary
•Observation of drift-like quasi coherent mode at 40 kHz preceding the L-H transition 

- Mode appears to be localized near the separatrix 
- Due to a lack of magnetic signature on the Mirnov, the mode is likely to be electrostatic  

• Turbulence energy transfer is analyzed during the L-H transition in RF, ohmic, and NBI 
shots 
- Clear reduction of the radial profile of the bulk poloidal velocity in L vs H mode regimes  

• In ohmic and RF, the increase of the production term is consistent with a drop in 
kinetic energy 

- This is NOT the case for NBI discharges as the kinetic energy in turbulence continues to 
increase  
- This might suggest that the additional torque from NBI could be important. 

•The rate of loss of kinetic energy to the mean flow is consistent with a collapse of 
turbulence in the L-H transition for NBI discharges.   
- Residual loss of kinetic energy is inconsistent with flow drive.  

• In ohmic discharges, however, an efficient conversion of kinetic turbulence to flow 
drive is observed: This is not the case for NBI L-H transition
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