

Blob Structure and Motion in the Edge of NSTX

S.J. Zweben¹, J.R. Myra², W.M. Davis¹, D.A. D'Ippolito², D.A. Russell²

¹ Princeton Plasma Physics Laboratory, Princeton NJ 08540 USA ² Lodestar Research Corporation, Boulder, CO 80301, USA

> APS DPP meeting Savannah GA Nov. 2015

Abstract

The structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrape-off layer (SOL) of NSTX is studied for representative Ohmic and Hmode discharges. Individual blobs were tracked in the radial vs. poloidal plane using data from the gas puff imaging (GPI) diagnostic at 400,000 frames/sec. A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for about 45,000 blobs. The blob velocities are compared with theoretical estimates and analytic blob models, and the blob shapes are compared with edge flow shear. Empirical relationships between various blob properties will be described, e.g. radial speed vs. amplitude, tilt vs. ellipticity.

Motivation and Goals

- Characterize blob properties in typical NSTX Ohmic and H-mode plasmas
- Look for empirical trends in large blob database
- Compare blob data to analytic blob theory models

Plasma Parameters

Focus on 7 similar Ohmic and 7 similar H-mode shots

	Ohmic	H-mode
shot range	141746-756	140389-395
time range (sec)	0.213-0.214	0.535-0.550
$I_{p}(kA)$	830	830
$B_{t}(kG)$	3.6	4.9
kappa (elongation)	1.9	2.4
W_{mhd} (kJ)	32	220
n_e average (10 ¹³ cm ⁻³)	1.6	5.2
$P_{nb}(MW)$	0	4.0
$T_{e}(0) (eV)$	530	920
$n_e(0) (10^{13} \text{ cm}^{-3})$	2.3	5.6
$T_{e}(a) (eV)$	13±6	29±17
$n_e(a) (10^{13} \text{ cm}^{-3})$	0.37±0.23	0.92±0.54
$T_{e} @ -2 cm (eV)$	23±4	134±53
n_{e} @ -2 cm (10 ¹³ cm ⁻³)	0.47±0.17	2.1±0.47
$\rho_{\rm s}$ (cm) @ -2 cm	0.2	0.3
τ_{ei} (µsec) @ -2 cm	0.5	1.5
$\beta_e @$ -2 cm	0.0003	0.005
# of blobs identified	28,800	18,800
# of blob trails	2600	820
blob trail lifetime (µs)	23	36

APS DPP Blobs Zweben Nov. 2015

Gas Puff Imaging (GPI) Diagnostic

- Neutral deuterium puffed into edge (~6x10²⁰ atoms)
- Excitation by electrons produce $D\alpha$ light (656.2 nm)
- View $D\alpha$ with fast camera aligned with local B field

Example of GPI Images vs.Time

- Images @ 2.5 µsec separation (400,000 frames/sec)
- Each image is normalized by time-averaged image
- Blobs with normalized amplitude ≥1.5 fit with ellipses

Interpretation of GPI Images

- Collisional radiative approximation for D α emission: S(photons/sec-cm³) ~ n₀ f(ne; T_e) ~ n₀ n_e^{α} T_e^{β} n₀ = local neutral density, given by GPI gas puff f(n_e; T_e) = density ratio between n=3 to n=2 state
- Typically density exponent α ~0.6-0.9 at n_e ≤ 2x10¹³ cm⁻³, and β ~ 0 near ~100 eV, but β ~ 1 near 10 eV
- We assume δS/S ~ δn/n and fluctuations in T_e are small (see S.J. Zweben et al Nucl. Fusion 55 (2015) 093035)

Definition of a Blob in GPI Data

- Region where normalized peak amplitude $A_{blob} \ge 1.5$
- Closed contour at half-maximum level fit by an ellipse
- Blob trails (colored lines) typically last ~23-36 µsec

Theory of Blob Radial Velocity

Radial blob velocity depends on regime diagram*

$$V_{SC} = c_s (L_{II}/R)(\rho_s/\delta_b)^2 \tilde{n}/n$$

 $V_{IR} = c_s (\delta_b/R)^{0.5} (\tilde{n}/n)^{0.5}$

Blob Database

- Every blob in every frame of every shot is included
- Total of 28,800 blobs in seven similar Ohmic shots, 18,800 blobs in seven similar in H-mode shots
- Quantities evaluated for each blob in database:

 $N_{\mbox{\scriptsize blob}}$ - number of blobs per 2 cm wide radial zone

- A_{blob} average blob amplitude within FWHM region
- L_{pol} poloidal blob size scale (cm FWHM)
- L_{rad} radial blob size scale (cm FWHM)
- ellip blob ellipticity (major/minor axis ratio)
- tilt blob tilt angle (clockwise from radially inward direction)
- V_{pol} poloidal blob velocity (km/sec)
- V_{rad} radial blob velocity (km/sec)

Examples of Full Blob Database

• Each blob within a single frame is one small point

Summary of Blob Radial Profiles #1

- More blobs near separatrix in Ohmic than in H-mode
- Average blob tilt angles ~90°, i.e. elongated poloidally

Summary of Blob Radial Profiles #2

- Poloidal size of blobs ~ 2x radial size of blobs
- Radial blob velocities V_{rad}~0.5-1 km/sec outward

Blob distribution Functions of A_{blob} and V_{rad}

 Blob distributions are broad, but with fewer blobs at high A_{blob}, and more outward V_{rad} in far SOL

Scaling of V_{rad} with Blob Amplitude

- Blob amplitude can be converted to $\tilde{n}/n = (1-1/A_{blob})$
- Blob V_{rad} increases with ñ/n, especially in H-mode, which is qualitatively consistent with SC blob model

Scaling of V_{rad} with Blob L_{pol}

- Blob V_{rad} decreases with L_{pol} in Ohmic plasmas, at which is qualitatively consistent with SC blob model
- Blob V_{rad} ~independent of L_{pol} in H-mode plasmas

Average Blob V_{rad} vs. Blob Theory

- Average V_{rad} in Ohmic ~ consistent with SC and IN
- Average V_{rad} in H-mode more consistent with SC
- But large uncertainties in both data and theory

Theory of Poloidal Blob Motion

- All blobs should all move along with $V_{pol} = E_{rad} x B drift$
- Small blobs should also move with diamagnetic drift
- Large blobs should be "self-propelled" by blob tilting*

$$V_{ExB} = 10^8 E_{rad}/B$$
, where $E_{rad} \sim 3^* grad(T_e)$

 $V_{dia} = c_s \rho_s / L_n$ in electron diamagnetic direction

V_{self} ~ grad [(-sin 2*tilt)(1-ellip)²]

* J.R. Myra et al, Nucl. Fusion 53 (2013) 073013

Average Blob V_{pol} vs. Theory

- Average V_{pol} similar to estimated E_{rad} xB drift speeds
- Average V_{pol} not similar to estimated V_{dia} speeds
- Ohmic blob V_{pol} reverses direction inside separatrix

Scaling of V_{pol} with Blob Amplitude

- V_{pol} increases (in IDD) at large ñ/n in Ohmic plasmas, qualitatively consistent with blob "self-propulsion"
- V_{pol} tends to become lower at large ñ/n in H-mode

Empirical Scaling of V_{pol} with V_{rad}

- No clear scaling of V_{pol} with V_{rad} in Ohmic plasmas
- Some correlation of V_{pol} with V_{rad} in H-mode plasmas
- Fairly wide scatter of blob velocities in all cases

V_{pol} vs. Reynolds Stress Proxy (RSP)

- RSP estimates blob V_{pol} from blob tilt and ellipticity*
- Ohmic data suggests blobs and $V_{\mbox{\tiny pol}}$ affect each other
- H-mode data suggests that V_{pol} affects blob tilting

^{*} J.R. Myra et al, Nucl. Fusion 53 (2013) 073013

Summary and Conclusion

- Blob V_{rad} in H-mode increases with ñ/n like SC model
- Blob V_{rad} in Ohmic decreases with L_{pol} like SC model
- Average blob V_{rad} agreed fairly well with SC model
- Average blob V_{pol} consistent with estimated $E_{rad} x B$

Conclusion: blob data is roughly consistent with blob models, but with large (unexplained) scatter

Possible Future Directions

- Measure n_e and T_e inside each blob, e.g. with THB¹
- Measure blob electric and magnetic fluctuations^{2,3}
- Measure 3-D blob structure with cameras & probes⁴
- Improve analysis techniques for blob dynamics⁵
- 'Seed' blobs in edge with ECH or injected pellets
- 1 Agostini M et al, Plasma Phys. Cont. Fusion 51105003 (2009)
- 2 Boedo J et al, Phys. Plasmas 21, 042309 (2014)
- 3 Spolaore, M et al, Phys. Plasmas 22, 012310 (2015)
- 4 Grulke O et al, Nucl. Fusion 54 (2014) 043012
- 5 Ogata, D et al, PP12.00050 poster Wednesday PM this meeting