

Gyrokinetic turbulence simulations of the pedestal region at various lithium doses in NSTX

M. Coury, W. Guttenfelder, D.R. Mikkelsen, J.M. Canik (ORNL),

A. Diallo, B.P. Leblanc, R. Maingi

and the NSTX-U Research Team

APS-DPP 2015 Savannah, Georgia November 16-20, 2015

Supported by U.S. DoE under contract DE-AC02-09CH11466

ABSTRACT

It is shown that lithium-coated walls alter the pedestal structure by, for instance, improving the energy confinement and reducing recycling. Recent work shows improved discharge characteristics with increasing lithium doses in highly shaped discharges. Edgelocalized modes triggered by large edge pressure and current gradients are altered, even suppressed with increasing lithium doses.

In this work, the plasma edge characteristics under increasing lithium doses are investigated with GS2 gyrokinetic code. Using experimental discharges as input parameters, microinstabilities are investigated in the pedestal region and the effect of increasing lithium doses on these microinstabilities is discussed.

Outline

- Background
 - Linear analysis of modes in low δ confinement regime with without Li
- Motivation: H-mode regime
 - Comparison of discharge profiles with without Li in H-mode regime
- Linear analysis of modes : overview
- Wavenumber scans: W W/O Li
 - $\operatorname{Low} k_\theta \rho \text{-}\mathsf{TEM}/\mathsf{KBM}/\mathsf{MTM}/\mathsf{ITG}$
 - $-\operatorname{High} k_\theta \rho \text{TEM/ETG}$
- Summary

Background: low δ confinement regime

In all the figures: without (black) and with (red) lithium

Influence of the plasma shaping on the confinement geometry

R. Maingi, JNM, 463 (2015): Dependence of recycling and edge profiles on lithium evaporation

Li coating widens the edge pedestal in H-mode discharges

R. Maingi, JNM, 463 (2015): Dependence of recycling and edge profiles on lithium evaporation

Linear analysis of modes for the reference and high Li dose study cases: overview

- GS2 ^(*) continuum local (flux tube) code solving gyro averaged (5D) Boltzmann equation coupled with Maxwell's equations \rightarrow Simulation of turbulence (δf) and fluxes in linear approximation or non linear generalization
- Linear analysis of modes using the local gyrokinetic code GS2 :
 - 3 species: e⁻,D,C; electromagnetic; fixed geometry;
 - Eingenfunctions parity;
 - Sign of real frequency:+ (-) ω ion (electron) diamagnetic direction;
 - Convergence tests and linear scans over β , ∇n , ∇T_e , v_e , ∇T_i

Goals:

- Investigation of the onset of KBM
- >Investigation of ETG limiting ∇Te at plasma edge
- ➢Investigation of the flattening of profiles with Li → Elimination of ELMS?.....

(*) M. Kotschenreuther, CPC, 88 (1995)

Validation of the gyrokinetic assumption

Gyrokinectic ordering Rutherford and Frieman 68: $\frac{\rho}{L} \ll 1$, with ρ the gyroraduis and L the gradient length

Ratio of the ion gyroradius ρ^* over the smallest gradient length *L* for the reference and 550 mg Li shots

→For local scale length close to the ion gyroradius→ reaching the limit of the gyrokinectic ordering ? Shot # 132543 at $\psi_N = 0.95 - \frac{\rho}{L} \sim 0.03$ Shot # 132588 at $\psi_N = 0.90 - \frac{\rho}{L} \sim 0.04$

→Local and global analyses converge for $1/\rho^* > 300^{(*)} \rightarrow$ Global (and non-linear) calculations needed to study transport properties

(*)B. F. McMillan, PRL 105, 155001 (2010)

Approach used for modes identification

Identification of modes:

- From the spectrum and at a given ψ_N , select wavenumbers from 'branches' in the spectrum
- At a given ψ_N and wavenumber:
 - Check the parity of the eigenfunctions and the sign of the frequencies
 - Perform parameter scans around the experimental values (keeping fixed GS2 geometry parameters calculated from numerical equilibria based on experiments) to identify thresholds

For instance:

- **ETG** \rightarrow driven by critical $\nabla Te : -\omega$, 'high' $k_{\theta}\rho$, 'high' γ , electrostatic nature,scan around $\nabla Te, exp$
- **KBM** \rightarrow unstable at 'high' β , driven by steep ∇p : + ω , 'low' $k_{\theta}\rho$, twisted A_{//}, electromagnetic nature,....scan around $\nabla T/n$, exp; $\beta_{e,exp}$

W. Guttenfelder Plasma Conference 2011 - NSTX turbulence and transport W. Guttenfelder N.F. **53** 093022 (2013)

Modes survey at various ψ_N : at 'low' $k_{\theta}\rho$

Modes survey at various ψ_N : at 'high' $k_{\theta}\rho$

- - ω : e- direction
- 'high' γ
- 'continuous' $k_{\theta} \rho$ range
- →TEM/ETG signature?

No Li– at $\psi_N = 0.96$; $k_{\theta}\rho \sim 0.10$ -0.2: different eigenfunction structures are observed

No Li–at $\psi_N = 0.96$; $k_{\theta}\rho \sim 0.1$: the parameters scan suggests that the mode is sensitive to ∇n around β_{exp}

No Li – $at \psi_N = 0.96$; $k_{\theta} \rho \sim 0.3$: the eigenfunctions present a tearing parity

Example case study: #132543

example scan around the experimental ve \rightarrow weak dependency on ve \rightarrow observation of 'branches' 1,2,3 ,4... \rightarrow need to check the eigenfunction parity for each branch (tp for all branches)

tearing parity (tp) \rightarrow MTM however: + $\omega \rightarrow KBM$ exp ratio $\frac{ve}{c} \sim 18 > 1 \rightarrow KBM$ 00 shot 132543-w,=0.96

No Li–at $\psi_N = 0.96$; $k_{\theta}\rho \sim 0.3$: the mode is found to be driven by ∇T , *n* above $\beta crit$

Example case study: #132543 Parameter scans

 \rightarrow sensitivity to β with an increase in γ with increasing β above β_{crit}

→ sensitivity to ∇n with an increase in γ with increasing ∇n and a shift from – to + ω at $\nabla n_{\rm crit}$

 \rightarrow 'small' sensitivity to ∇Te (no clear ∇Te_{crit} from this first scan)

 \rightarrow observation of 'branches' with eigenfunctions having different parity:

1→(β =0.006) ballooning-like structure 2→(β =0.009) ballooning-like structure 3→(β =0.015) tearing parity 4→(β =0.025) ballooning-like structure

MTM, KBM, hybrid mode...

NSTX-U

APS 2015, M. Coury et al.

ω(c_s/a)

γ(c_s/a)

No Li–at $\psi_N = 0.96$; $k_{\theta}\rho \sim 0.8$: the eigenfunctions present ballooning-like structures of KBM

Example case study: #132543

NSTX-U

APS 2015, M. Coury et al.

No Li–at $\psi_N = 0.96$; $k_{\theta}\rho \sim 0.8$: KBM found to be driven by ∇T , *n* above $\beta crit$ around experiments

APS 2015, M. Coury et al.

No Li–Low $k_{\theta}\rho$ -summary mode survey at at $\psi_N = 0.96$

Li–at $\psi_N = 0.90$; $k_{\theta}\rho$ =0.1-0.3: eigenfunctions with tearing-like parities and (+) ω suggest competing modes

NSTX-U

APS 2015, M. Coury et al.

Li–at $\psi_N = 0.90$; $k_{\theta}\rho$ =0.8: eigenfunctions with ballooning-like structures and (+) ω suggest KBM

Example case study: #132588

Ø/A_{//}<1 magnetic nature

Li–at $\psi_N = 0.90$; $k_{\theta}\rho \sim 0.1$ -0.8: KBM found to be driven by ∇T , *n* above $\beta crit$ around experiments

Li–Low $k_{\theta}\rho$ -summary mode survey at $\psi_N = 0.90$

No Li–at $\psi_N = 0.96$; $k_{\theta}\rho = 5.0 - 150.0$: Signature of TEM/ETG with - ω and ballooning-like eigenfunctions

Example case study: #132543

Ø/A_{//}>1 electrostatic nature

even ϕ , electrostatic nature: \rightarrow TEM? however Re(A_{//}) and Im(A_{//}) are in phase are in phase and + ω

even ϕ , - $\omega \rightarrow \text{TEM/ETG}$

No Li-at $\psi_N = 0.96$; $k_{\theta}\rho = 5.0 - 150.0$: the modes are found to be driven by β , ∇T , n

Example case study: #132543 Parameter scans

 $k_{\theta}\rho$ =5.0:twisted A_{//}, electrostatic nature

- \rightarrow small \uparrow in γ with $\uparrow \beta$
- \rightarrow little dependency on ∇n , Te

 $k_{\theta} \rho$ =60.0:TEM/ETG

- \rightarrow clear dependency on $\nabla Te, n, \beta$
- \rightarrow $\uparrow \gamma$ with $\uparrow \beta$ and ∇Te

 $k_{\theta} \rho$ =150.0:ETG

 \rightarrow Dependency on $\nabla Te, n$

No Li-high $k_{\theta}\rho$ -summary mode survey at $\psi_N = 0.96$

Example case study: #132543, $\psi_N = 0.96$

wavenumber scan $#132543, \psi_N = 0.96$

Li–at $\psi_N = 0.90$; $k_{\theta}\rho = 5.0 - 150.0$: Signature of TEM/ETG with - ω and ballooning-like eigenfunctions

Example case study: #132588

Ø/A//>1 electrostatic nature

Normalized eigenfunctions of the mode at $k_{\theta}\rho$ =5.0;

even ϕ , electrostatic nature TEM? however Re(A_{//}) and Im(A_{//}) are in phase and + ω

Normalized eigenfunctions of the mode at $k_{\theta}\rho$ =60.0;

of the mode at $k_{\theta}\rho = 150.0$;

even ϕ , - $\omega \rightarrow \text{TEM/ETG}$

Li–at $\psi_N = 0.90$; $k_{\theta}\rho = 5.0 - 150.0$: the modes are found to be driven by β , ∇T , n

Li-high $k_{\theta}\rho$ -summary mode survey at $\psi_N = 0.90$

Example case study: #132588

 \rightarrow summary of first observations

Summary

Survey of modes for the reference and 550 mg Li shots:

- Complexes eigenfunction structures are found for both study cases at low wavenumbers
 - The parameter scans suggest the presence of competing modes such as MTM/KBM
- Signature of TEM/ETG modes at higher wavenumbers for both study cases

≻Work in progress:

- > Extend the parameter scans to other ψ_N with-w/o Li
- Refine parameter scans (e.g. geometry reconstruction) to identify competing modes
- > Identify most unstable modes for each ψ_{N} with-w/o Li
- > Non linear runs: infer heat / particle fluxes with-w/o Li

Investigation of the onset of KBM

>Investigation of ETG limiting ∇Te at plasma edge

➢Investigation of the widening of the pedestal region with Li → Elimination of ELMS?.....

GS2 convergence tests

Example case study: #132543, ψ_N 0.96, $k_{\theta}\rho$ =0.3

nperiod=2,big=1

ntheta	k _θ ρ	ω	γ
192	0.3	0.41967	0.18349
144	0.3	0.42144	0.18239
72	0.3	0.41016	0.1648

